cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A352181 a(n) = A200993(n)/2.

Original entry on oeis.org

0, 5, 495, 48510, 4753490, 465793515, 45643010985, 4472549283020, 438264186724980, 42945417749765025, 4208212675290247475, 412361896760694487530, 40407257669872769530470, 3959498889750770719498535, 387990483937905657741325965, 38019107927025003687930446040
Offset: 0

Views

Author

N. J. A. Sloane, Mar 08 2022

Keywords

Comments

Halves of triangular numbers which are also thirds of triangular numbers.

Crossrefs

Formula

a(n) = A200994(n)/3.
From Chai Wah Wu, Apr 22 2024: (Start)
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n > 2.
G.f.: -5*x/((x - 1)*(x^2 - 98*x + 1)). (End)
a(n) = 5*A278620(n). - Hugo Pfoertner, Apr 22 2024

A200994 Triangular numbers, T(m), that are three-halves of another triangular number; T(m) such that 2*T(m) = 3*T(k) for some k.

Original entry on oeis.org

0, 15, 1485, 145530, 14260470, 1397380545, 136929032955, 13417647849060, 1314792560174940, 128836253249295075, 12624638025870742425, 1237085690282083462590, 121221773009618308591410, 11878496669252312158495605, 1163971451813716973223977895
Offset: 0

Views

Author

Charlie Marion, Feb 15 2012

Keywords

Comments

For n > 1, a(n) = 98*a(n-1) - a(n-2) + 15. In general, for m>0, let b(n) be those triangular numbers such that for some triangular number c(n), (m+1)*b(n) = m*c(n). Then b(0) = 0, b(1) = A014105(m) and for n > 1, b(n) = 2*A069129(m+1)*b(n-1) - b(n-2) + A014105(m). Further, c(0) = 0, c(1) = A000384(m+1) and for n>1, c(n) = 2*A069129(m+1)*c(n-1) - c(n-2) + A000384(m+1).

Examples

			2*0 = 3*0.
2*15 = 3*10.
2*1485 = 3*990.
2*145530 = 3*97020.
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(15*x/((1-x)*(1-98*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    LinearRecurrence[{99, -99, 1}, {0, 15, 1485}, 20] (* T. D. Noe, Feb 15 2012 *)
  • PARI
    concat(0, Vec(15*x/((1-x)*(1-98*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
    

Formula

From Colin Barker, Mar 02 2016: (Start)
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n>2.
G.f.: 15*x / ((1-x)*(1-98*x+x^2)). (End)
a(n) = (-10+(5-2*sqrt(6))*(49+20*sqrt(6))^(-n)+(5+2*sqrt(6))*(49+20*sqrt(6))^n)/64. - Colin Barker, Mar 03 2016

A201008 Triangular numbers, T(m), that are five-sixths of another triangular number: T(m) such that 6*T(m)=5*T(k) for some k.

Original entry on oeis.org

0, 55, 26565, 12804330, 6171660550, 2974727580825, 1433812522297155, 691094661019647940, 333106192798948009980, 160556493834431921162475, 77387896922003387052303025, 37300805759911798127288895630
Offset: 0

Views

Author

Charlie Marion, Dec 20 2011

Keywords

Examples

			6*0 = 5*0;
6*55 = 5*66;
6*26565 = 5*31878;
6*12804330 = 5*15365196.
		

Crossrefs

Programs

  • Magma
    I:=[0, 55, 26565]; [n le 3 select I[n] else 483*Self(n-1)-483*Self(n-2)+Self(n-3): n in [1..15]]; // Vincenzo Librandi, Dec 22 2011
    
  • Mathematica
    LinearRecurrence[{483,-483,1},{0,55,26565},30] (* Vincenzo Librandi, Dec 22 2011 *)
  • Maxima
    makelist(expand(((11-2*sqrt(30))^(2*n+1)+(11+2*sqrt(30))^(2*n+1)-22)/192), n, 0, 11); /* Bruno Berselli, Dec 21 2011 */
    
  • PARI
    concat(0,Vec(55/(1-x)/(1-482*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Dec 23 2011

Formula

For n > 1, a(n) = 482*a(n-1) - a(n-2) + 55. See A200993 for generalization.
From Bruno Berselli, Dec 21 2011: (Start)
G.f.: 55*x/((1-x)*(1-482*x+x^2)).
a(n) = a(-n-1) = 483*a(n-1)-483*a(n-2)+a(n-3).
a(n) = ((11-2*r)^(2*n+1)+(11+2*r)^(2*n+1)-22)/192, where r=sqrt(30). (End)

Extensions

a(11) corrected by Bruno Berselli, Dec 21 2011
a(6) corrected by Vincenzo Librandi, Dec 22 2011

A278620 Expansion of x/(1 - 99*x + 99*x^2 - x^3).

Original entry on oeis.org

0, 1, 99, 9702, 950698, 93158703, 9128602197, 894509856604, 87652837344996, 8589083549953005, 841642535058049495, 82472379352138897506, 8081451533974553906094, 791899777950154143899707, 77598096787581131548265193, 7603821585405000737586089208, 745096917272902491151888477192
Offset: 0

Views

Author

Bruno Berselli, Nov 24 2016

Keywords

Crossrefs

First differences: A173205.

Programs

  • Maple
    P:=proc(q) local a,b,c,n; a:=0; b:=1; print(a); print(b);for n from 1 to q do
    c:=98*b-a+1; a:=b; b:=c; print(b); od; end: P(100); # Paolo P. Lava, Nov 30 2016
  • Mathematica
    CoefficientList[x/(1 - 99 x + 99 x^2 - x^3) + O[x]^20, x]
    LinearRecurrence[{99,-99,1},{0,1,99},20] (* Harvey P. Dale, Aug 22 2020 *)
  • Maxima
    makelist(coeff(taylor(x/((1-x)*(1-98*x+x^2)), x, 0, n), x, n), n, 0, 20);
  • PARI
    concat(0, Vec(1/(1-99*x+99*x^2-x^3) + O(x^20)))
    
  • Sage
    gf = x/((1-x)*(1-98*x+x^2)); print(taylor(gf, x, 0, 20).list())
    

Formula

O.g.f.: x/((1 - x)*(1 - 98*x + x^2)).
E.g.f.: ((5-2*sqrt(6))*exp((5-2*sqrt(6))^2*x) + (5+2*sqrt(6))*exp((5+2*sqrt(6))^2*x) - 10*exp(x))/960.
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n>2.
a(n) = 98*a(n-1) - a(n-2) + 1 for n>1.
a(n) = a(-n-1) = ((5+2*sqrt(6))^(2*n+1) + (5-2*sqrt(6))^(2*n+1))/960 - 1/96.
a(n) = floor((5+2*sqrt(6))^(2*n+1)/960).
a(n)*a(n-2) = a(n-1)*(a(n-1)-1) for n>1.
Lim_{i -> infinity} a(i)/a(i-1) = (5 + 2*sqrt(6))^2.
From the closed form: a(n) + a(-n) = A108741(n).
a(n) = A200993(n)/10 = A200994(n)/15.
a(n) = A123479(n)/20 for n>0.
a(n) = A045502(n)/40.

A200998 Triangular numbers, T(m), that are three-quarters of another triangular number: T(m) such that 4*T(m)=3*T(k) for some k.

Original entry on oeis.org

0, 21, 4095, 794430, 154115346, 29897582715, 5799976931385, 1125165627105996, 218276331681631860, 42344483180609474865, 8214611460706556491971, 1593592278893891349967530, 309148687493954215337208870, 59973251781548223884068553271
Offset: 0

Views

Author

Charlie Marion, Dec 20 2011

Keywords

Comments

For n>1, a(n) = 194*a(n-1) - a (n-2) + 21. See A200993 for generalization.

Examples

			4*0 = 3*0.
4*21 = 3*28.
4*4095 = 3*5640.
4*794430 = 3*1059240.
		

Crossrefs

Programs

  • Magma
    I:=[0,21]; [n le 2 select I[n] else  194*Self(n-1) - Self(n-2) + 21: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
  • Mathematica
    LinearRecurrence[{195, -195, 1}, {0, 21, 4095}, 30] (* Vincenzo Librandi, Mar 03 2016 *)
  • PARI
    concat(0, Vec(21/(1 - 195*x + 195*x^2 - x^3) + O(x^99))) \\ Charles R Greathouse IV, Dec 20 2011
    

Formula

G.f.: (21*x)/(1 - 195*x + 195*x^2 - x^3).
From Colin Barker, Mar 02 2016: (Start)
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3) for n>2.
a(n) = ((97+56*sqrt(3))^(-n)*(-1+(97+56*sqrt(3))^n)*(-7+4*sqrt(3)+(7+4*sqrt(3))*(97+56*sqrt(3))^n))/128.
(End)

A201003 Triangular numbers, T(m), that are four-fifths of another triangular number: T(m) such that 5*T(m) = 4*T(k) for some k.

Original entry on oeis.org

0, 36, 11628, 3744216, 1205625960, 388207814940, 125001710784756, 40250162664876528, 12960427376379457296, 4173217365031520372820, 1343763031112773180590780, 432687522800947932629858376, 139324038578874121533633806328, 44861907734874666185897455779276
Offset: 0

Views

Author

Charlie Marion, Dec 20 2011

Keywords

Comments

Also, numbers m such that 8*m+1 and 10*m+1 are squares. Example: 8*1205625960+1 = 98209^2 and 12056259601 = 109801^2. - Bruno Berselli, Mar 03 2016

Examples

			5*0 = 4*0;
5*36 = 4*45;
5*11628 = 4*14535;
5*3744216 = 4*4680270.
		

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(36*x/((1-x)*(1-322*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    triNums = Table[(n^2 + n)/2, {n, 0, 4999}]; Select[triNums, MemberQ[triNums, (5/4)#] &] (* Alonso del Arte, Dec 20 2011 *)
    CoefficientList[Series[-36 x/((x - 1) (x^2 - 322 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 11 2014 *)
    LinearRecurrence[{323,-323,1},{0,36,11628},20] (* Harvey P. Dale, Dec 21 2015 *)
  • PARI
    concat(0, Vec(36*x/((1-x)*(1-322*x+x^2)) + O(x^15))) \\ Colin Barker, Mar 02 2016
    

Formula

For n>1, a(n) = 322*a(n-1) - a(n-2) + 36. See A200993 for generalization.
G.f.: 36*x / ((1-x)*(x^2-322*x+1)). - R. J. Mathar, Aug 10 2014
From Colin Barker, Mar 02 2016: (Start)
a(n) = (-18+(9-4*sqrt(5))*(161+72*sqrt(5))^(-n)+(9+4*sqrt(5))*(161+72*sqrt(5))^n)/160.
a(n) = 323*a(n-1) - 323*a(n-2) + a(n-3) for n>2. (End)
a(n) = 36*A298271(n). - Amiram Eldar, Dec 01 2024

A201004 Triangular numbers, T(m), that are five-quarters of another triangular number; T(m) such that 4*T(m) = 5*T(k) for some k.

Original entry on oeis.org

0, 45, 14535, 4680270, 1507032450, 485259768675, 156252138480945, 50312703331095660, 16200534220474321620, 5216521706289400466025, 1679703788890966475738475, 540859403501184915787322970, 174155048223592651917042257910, 56077384668593332732371819724095
Offset: 0

Views

Author

Charlie Marion, Feb 15 2012

Keywords

Examples

			4*0 = 5*0.
4*45 = 5*36.
4*14535 = 5*11628.
4*4680270 = 5*3744216.
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(45*x/((1-x)*(1-322*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    LinearRecurrence[{323, -323, 1}, {0, 45, 14535}, 20] (* T. D. Noe, Feb 15 2012 *)
    CoefficientList[Series[-45 x/((x - 1) (x^2 - 322 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 11 2014 *)
  • PARI
    concat(0, Vec(45*x/((1-x)*(1-322*x+x^2)) + O(x^15))) \\ Colin Barker, Mar 02 2016
    

Formula

For n > 1, a(n) = 322*a(n-1) - a(n-2) + 45. See A200994 for generalization.
G.f.: 45*x / ((1-x)*(x^2-322*x+1)). - R. J. Mathar, Aug 10 2014
From Colin Barker, Mar 02 2016: (Start)
a(n) = (-18 + (9-4*sqrt(5))*(161+72*sqrt(5))^(-n) + (9+4*sqrt(5))*(161+72*sqrt(5))^n)/128.
a(n) = 323*a(n-1) - 323*a(n-2) + a(n-3) for n > 2. (End)
a(n) = 45*A298271(n). - Amiram Eldar, Dec 01 2024

Extensions

a(7) corrected by R. J. Mathar, Aug 10 2014

A352182 Twice A200994.

Original entry on oeis.org

0, 30, 2970, 291060, 28520940, 2794761090, 273858065910, 26835295698120, 2629585120349880, 257672506498590150, 25249276051741484850, 2474171380564166925180, 242443546019236617182820, 23756993338504624316991210, 2327942903627433946447955790, 228114647562150022127582676240
Offset: 0

Views

Author

N. J. A. Sloane, Mar 08 2022

Keywords

Comments

Also 3 times A200993 and 6 times A352181.
Numbers that both doubles and triples of triangular numbers.

Crossrefs

Formula

From Chai Wah Wu, Apr 22 2024: (Start)
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n > 2.
G.f.: -30*x/((x - 1)*(x^2 - 98*x + 1)). (End)
a(n) = 30*A278620. - Hugo Pfoertner, Apr 22 2024
Showing 1-8 of 8 results.