cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A045502 Numbers k such that 2*k+1 and 3*k+1 are squares.

Original entry on oeis.org

0, 40, 3960, 388080, 38027920, 3726348120, 365144087880, 35780394264160, 3506113493799840, 343563341998120200, 33665701402321979800, 3298895174085555900240, 323258061358982156243760, 31675991118006165755988280, 3103923871503245261930607720
Offset: 0

Views

Author

Fred Schwab (fschwab(AT)nrao.edu)

Keywords

Comments

Problem 1 for the 3rd grade of the 38th Mathematics Competition of the Republic of Slovenia (1998) was to prove that if k is a natural number such that 2*k+1 and 3*k+1 are perfect squares, then k is divisible by 40 (see link with solution Crux Mathematicorum and formula Mar 25 2021). - Bernard Schott, Mar 25 2021

Crossrefs

Programs

  • GAP
    a:=[0,40,3960];; for n in [4..15] do a[n]:=99*a[n-1]-99*a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Jul 17 2018
    
  • Magma
    I:=[0,40,3960]; [n le 3 select I[n] else 99*Self(n-1) -99*Self(n-2) + Self(n-3): n in [1..15]]; // G. C. Greubel, Jan 13 2020
    
  • Maple
    seq(coeff(series(40*x/((1-x)*(x^2-98*x+1)), x,n+1),x,n),n=0..15); # Muniru A Asiru, Jul 17 2018
  • Mathematica
    f[0]=0; f[1]=2; f[n_]:= f[n]= 10*f[n-1] -f[n-2]; a[n_]:= f[n]*f[n+1];
    CoefficientList[Series[40x/((1-x)(1-98x+x^2)), {x,0,15}], x] (* Michael De Vlieger, Jul 20 2018 *)
    Table[5*(ChebyshevT[n, 49] +48*ChebyshevU[n-1, 49] -1)/12, {n,0,15}] (* G. C. Greubel, Jan 13 2020 *)
    LinearRecurrence[{99,-99,1},{0,40,3960},20] (* Harvey P. Dale, Dec 02 2023 *)
  • PARI
    concat(0, Vec(40*x/((1-x)*(1-98*x+x^2))+O(x^20))) \\ Colin Barker, Mar 23 2017
    
  • Sage
    [4*chebyshev_U(n-1,5)*chebyshev_U(n,5) for n in (0..15)] # G. C. Greubel, Jan 13 2020

Formula

From Colin Barker, Mar 23 2017: (Start)
O.g.f.: 40*x / ((1 - x)*(1 - 98*x + x^2)).
a(n) = 99*a(n-1)- 99*a(n-2) + a(n-3) for n>2.
a(n) = (-10 + (5 - 2*sqrt(6))*(49 + 20*sqrt(6))^(-n) + (5 + 2*sqrt(6))*(49 + 20*sqrt(6))^n)/24. (End)
From G. C. Greubel, Jan 13 2020: (Start)
a(n) = 5*(ChebyshevT(n, 49) + 48*ChebyshevU(n-1, 48) - 1)/12.
a(n) = 4*ChebyshevU(n-1, 5)*ChebyshevU(n, 5). (End)
a(n) = 40*A278620(n). - Bernard Schott, Mar 25 2021

A278438 Numbers m such that T(m) + 2*T(m+1) is a square, where T = A000217.

Original entry on oeis.org

7, 799, 78407, 7683199, 752875207, 73774087199, 7229107670407, 708378777612799, 69413891098384007, 6801852948864019999, 666512175097575576007, 65311391306613542428799, 6399849835873029582446407, 627119972524250285537319199, 61451357457540654953074835207
Offset: 1

Views

Author

Bruno Berselli, Nov 23 2016

Keywords

Comments

It is well known that T(m) + k*T(m+1) is always a square for k=1. For k=3, the nonnegative values of m are the terms of A278310.
Square roots of T(m) + 2*T(m+1) are listed by A168520 (after 0).
Negative values of m for which T(m) + 2*T(m+1) is a square: -1, -2, -82, -7922, -776162, ...

Crossrefs

Subsequence of A056220.
Cf. A278310: numbers m such that T(m) + 3*T(m+1) is a square.

Programs

  • Magma
    Iv:=[7, 799]; [n le 2 select Iv[n] else 98*Self(n-1)-Self(n-2)+112: n in [1..20]];
    
  • Maple
    P:=proc(q) local n; for n from 1 to q do if type(sqrt((3*n^2+7*n+4)/2),integer) then print(n); fi; od; end: P(10^9); #  Paolo P. Lava, Nov 25 2016
  • Mathematica
    Table[((5 + 2 Sqrt[6])^(2 n) + (5 - 2 Sqrt[6])^(2 n))/12 - 7/6, {n, 1, 20}]
    RecurrenceTable[{a[1] == 7, a[2] == 799, a[n] == 98 a[n - 1] - a[n - 2] + 112}, a, {n, 1, 20}]
    LinearRecurrence[{99,-99,1},{7,799,78407},20] (* Harvey P. Dale, Oct 18 2024 *)
  • PARI
    Vec(x*(7 + 106*x - x^2)/((1 - x)*(1 - 98*x + x^2)) + O(x^20)) \\ Colin Barker, Nov 27 2016
  • Sage
    def A278438():
        a, b = 7, 799
        yield a
        while True:
            yield b
            a, b = b, 98*b - a + 112
    a = A278438(); print([next(a) for  in range(15)]) # _Peter Luschny, Nov 24 2016
    

Formula

O.g.f.: x*(7 + 106*x - x^2)/((1 - x)*(1 - 98*x + x^2)).
E.g.f.: (exp((5-2*sqrt(6))^2*x) + exp((5+2*sqrt(6))^2*x) - 14*exp(x))/12 + 1.
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n>3.
a(n) = 98*a(n-1) - a(n-2) + 112 for n>2.
a(n) = a(-n) = ((5 + 2*sqrt(6))^(2*n) + (5 - 2*sqrt(6))^(2*n))/12 - 7/6.
a(n) = A001079(2*n)/6 - 7/6.
a(n) = 2*A001078(n)^2 - 1 = A122652(n)^2/2 - 1.
a(n) = -A278620(n+1) + 106*A278620(n) + 7*A278620(n-1).
Lim_{n -> infinity} a(n)/a(n-1) = (5 + 2*sqrt(6))^2.

A352181 a(n) = A200993(n)/2.

Original entry on oeis.org

0, 5, 495, 48510, 4753490, 465793515, 45643010985, 4472549283020, 438264186724980, 42945417749765025, 4208212675290247475, 412361896760694487530, 40407257669872769530470, 3959498889750770719498535, 387990483937905657741325965, 38019107927025003687930446040
Offset: 0

Views

Author

N. J. A. Sloane, Mar 08 2022

Keywords

Comments

Halves of triangular numbers which are also thirds of triangular numbers.

Crossrefs

Formula

a(n) = A200994(n)/3.
From Chai Wah Wu, Apr 22 2024: (Start)
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n > 2.
G.f.: -5*x/((x - 1)*(x^2 - 98*x + 1)). (End)
a(n) = 5*A278620(n). - Hugo Pfoertner, Apr 22 2024

A352182 Twice A200994.

Original entry on oeis.org

0, 30, 2970, 291060, 28520940, 2794761090, 273858065910, 26835295698120, 2629585120349880, 257672506498590150, 25249276051741484850, 2474171380564166925180, 242443546019236617182820, 23756993338504624316991210, 2327942903627433946447955790, 228114647562150022127582676240
Offset: 0

Views

Author

N. J. A. Sloane, Mar 08 2022

Keywords

Comments

Also 3 times A200993 and 6 times A352181.
Numbers that both doubles and triples of triangular numbers.

Crossrefs

Formula

From Chai Wah Wu, Apr 22 2024: (Start)
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n > 2.
G.f.: -30*x/((x - 1)*(x^2 - 98*x + 1)). (End)
a(n) = 30*A278620. - Hugo Pfoertner, Apr 22 2024
Showing 1-4 of 4 results.