cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A200994 Triangular numbers, T(m), that are three-halves of another triangular number; T(m) such that 2*T(m) = 3*T(k) for some k.

Original entry on oeis.org

0, 15, 1485, 145530, 14260470, 1397380545, 136929032955, 13417647849060, 1314792560174940, 128836253249295075, 12624638025870742425, 1237085690282083462590, 121221773009618308591410, 11878496669252312158495605, 1163971451813716973223977895
Offset: 0

Views

Author

Charlie Marion, Feb 15 2012

Keywords

Comments

For n > 1, a(n) = 98*a(n-1) - a(n-2) + 15. In general, for m>0, let b(n) be those triangular numbers such that for some triangular number c(n), (m+1)*b(n) = m*c(n). Then b(0) = 0, b(1) = A014105(m) and for n > 1, b(n) = 2*A069129(m+1)*b(n-1) - b(n-2) + A014105(m). Further, c(0) = 0, c(1) = A000384(m+1) and for n>1, c(n) = 2*A069129(m+1)*c(n-1) - c(n-2) + A000384(m+1).

Examples

			2*0 = 3*0.
2*15 = 3*10.
2*1485 = 3*990.
2*145530 = 3*97020.
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(15*x/((1-x)*(1-98*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    LinearRecurrence[{99, -99, 1}, {0, 15, 1485}, 20] (* T. D. Noe, Feb 15 2012 *)
  • PARI
    concat(0, Vec(15*x/((1-x)*(1-98*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
    

Formula

From Colin Barker, Mar 02 2016: (Start)
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n>2.
G.f.: 15*x / ((1-x)*(1-98*x+x^2)). (End)
a(n) = (-10+(5-2*sqrt(6))*(49+20*sqrt(6))^(-n)+(5+2*sqrt(6))*(49+20*sqrt(6))^n)/64. - Colin Barker, Mar 03 2016

A352182 Twice A200994.

Original entry on oeis.org

0, 30, 2970, 291060, 28520940, 2794761090, 273858065910, 26835295698120, 2629585120349880, 257672506498590150, 25249276051741484850, 2474171380564166925180, 242443546019236617182820, 23756993338504624316991210, 2327942903627433946447955790, 228114647562150022127582676240
Offset: 0

Views

Author

N. J. A. Sloane, Mar 08 2022

Keywords

Comments

Also 3 times A200993 and 6 times A352181.
Numbers that both doubles and triples of triangular numbers.

Crossrefs

Formula

From Chai Wah Wu, Apr 22 2024: (Start)
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n > 2.
G.f.: -30*x/((x - 1)*(x^2 - 98*x + 1)). (End)
a(n) = 30*A278620. - Hugo Pfoertner, Apr 22 2024
Showing 1-2 of 2 results.