A200993
Triangular numbers, T(m), that are two-thirds of another triangular number; T(m) such that 3*T(m) = 2*T(k) for some k.
Original entry on oeis.org
0, 10, 990, 97020, 9506980, 931587030, 91286021970, 8945098566040, 876528373449960, 85890835499530050, 8416425350580494950, 824723793521388975060, 80814515339745539060940, 7918997779501541438997070, 775980967875811315482651930, 76038215854050007375860892080
Offset: 0
3*0 = 2*0.
3*10 = 2*15.
3*990 = 2*1485.
3*97020 = 2*145530.
- Colin Barker, Table of n, a(n) for n = 0..500
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(10*x/((1-x)*(x^2-98*x+1)))); // G. C. Greubel, Jul 15 2018
-
LinearRecurrence[{99,-99,1},{0,10,990},20] (* Harvey P. Dale, Feb 25 2018 *)
-
concat(0, Vec(10*x/((1-x)*(1-98*x+x^2)) + O(x^40))) \\ Colin Barker, Mar 02 2016
A200994
Triangular numbers, T(m), that are three-halves of another triangular number; T(m) such that 2*T(m) = 3*T(k) for some k.
Original entry on oeis.org
0, 15, 1485, 145530, 14260470, 1397380545, 136929032955, 13417647849060, 1314792560174940, 128836253249295075, 12624638025870742425, 1237085690282083462590, 121221773009618308591410, 11878496669252312158495605, 1163971451813716973223977895
Offset: 0
2*0 = 3*0.
2*15 = 3*10.
2*1485 = 3*990.
2*145530 = 3*97020.
- Colin Barker, Table of n, a(n) for n = 0..500
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
- Index entries for linear recurrences with constant coefficients, signature (99,-99,1).
-
m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(15*x/((1-x)*(1-98*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
LinearRecurrence[{99, -99, 1}, {0, 15, 1485}, 20] (* T. D. Noe, Feb 15 2012 *)
-
concat(0, Vec(15*x/((1-x)*(1-98*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
A200998
Triangular numbers, T(m), that are three-quarters of another triangular number: T(m) such that 4*T(m)=3*T(k) for some k.
Original entry on oeis.org
0, 21, 4095, 794430, 154115346, 29897582715, 5799976931385, 1125165627105996, 218276331681631860, 42344483180609474865, 8214611460706556491971, 1593592278893891349967530, 309148687493954215337208870, 59973251781548223884068553271
Offset: 0
4*0 = 3*0.
4*21 = 3*28.
4*4095 = 3*5640.
4*794430 = 3*1059240.
-
I:=[0,21]; [n le 2 select I[n] else 194*Self(n-1) - Self(n-2) + 21: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
-
LinearRecurrence[{195, -195, 1}, {0, 21, 4095}, 30] (* Vincenzo Librandi, Mar 03 2016 *)
-
concat(0, Vec(21/(1 - 195*x + 195*x^2 - x^3) + O(x^99))) \\ Charles R Greathouse IV, Dec 20 2011
A201003
Triangular numbers, T(m), that are four-fifths of another triangular number: T(m) such that 5*T(m) = 4*T(k) for some k.
Original entry on oeis.org
0, 36, 11628, 3744216, 1205625960, 388207814940, 125001710784756, 40250162664876528, 12960427376379457296, 4173217365031520372820, 1343763031112773180590780, 432687522800947932629858376, 139324038578874121533633806328, 44861907734874666185897455779276
Offset: 0
5*0 = 4*0;
5*36 = 4*45;
5*11628 = 4*14535;
5*3744216 = 4*4680270.
-
m:=20; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(36*x/((1-x)*(1-322*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
triNums = Table[(n^2 + n)/2, {n, 0, 4999}]; Select[triNums, MemberQ[triNums, (5/4)#] &] (* Alonso del Arte, Dec 20 2011 *)
CoefficientList[Series[-36 x/((x - 1) (x^2 - 322 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 11 2014 *)
LinearRecurrence[{323,-323,1},{0,36,11628},20] (* Harvey P. Dale, Dec 21 2015 *)
-
concat(0, Vec(36*x/((1-x)*(1-322*x+x^2)) + O(x^15))) \\ Colin Barker, Mar 02 2016
A201004
Triangular numbers, T(m), that are five-quarters of another triangular number; T(m) such that 4*T(m) = 5*T(k) for some k.
Original entry on oeis.org
0, 45, 14535, 4680270, 1507032450, 485259768675, 156252138480945, 50312703331095660, 16200534220474321620, 5216521706289400466025, 1679703788890966475738475, 540859403501184915787322970, 174155048223592651917042257910, 56077384668593332732371819724095
Offset: 0
4*0 = 5*0.
4*45 = 5*36.
4*14535 = 5*11628.
4*4680270 = 5*3744216.
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(45*x/((1-x)*(1-322*x+x^2)))); // G. C. Greubel, Jul 15 2018
-
LinearRecurrence[{323, -323, 1}, {0, 45, 14535}, 20] (* T. D. Noe, Feb 15 2012 *)
CoefficientList[Series[-45 x/((x - 1) (x^2 - 322 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 11 2014 *)
-
concat(0, Vec(45*x/((1-x)*(1-322*x+x^2)) + O(x^15))) \\ Colin Barker, Mar 02 2016
Showing 1-5 of 5 results.
Comments