A120101 Triangle T(n,k) = lcm(1,...,2*n+2)/((k+1)*binomial(2*k+2,k+1)).
1, 6, 1, 30, 5, 1, 420, 70, 14, 3, 1260, 210, 42, 9, 2, 13860, 2310, 462, 99, 22, 5, 180180, 30030, 6006, 1287, 286, 65, 15, 360360, 60060, 12012, 2574, 572, 130, 30, 7, 6126120, 1021020, 204204, 43758, 9724, 2210, 510, 119, 28, 116396280, 19399380, 3879876, 831402, 184756, 41990, 9690, 2261, 532, 126
Offset: 0
Examples
Triangle begins: 1; 6, 1; 30, 5, 1; 420, 70, 14, 3; 1260, 210, 42, 9, 2; 13860, 2310, 462, 99, 22, 5; 180180, 30030, 6006, 1287, 286, 65, 15; 360360, 60060, 12012, 2574, 572, 130, 30, 7;
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..5050
Crossrefs
Programs
-
GAP
Flat(List([0..9],n->List([0..n],k->Lcm(List([1..2*n+2],i->i))/((k+1)*Binomial(2*k+2,k+1))))); # Muniru A Asiru, Feb 26 2019
-
Magma
[Lcm([1..2*n+2])/((k+1)*(k+2)*Catalan(k+1)): k in [0..n], n in [0..12]]; // G. C. Greubel, May 03 2023
-
Maple
T:=(n,k)-> ilcm(seq(q,q=1..2*n+2))/((k+1)*binomial(2*k+2,k+1)): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Feb 26 2019
-
Mathematica
Table[LCM@@Range[2*n+2]/((k+1)*Binomial[2*k+2,k+1]), {n,0,12}, {k,0, n}]//Flatten (* G. C. Greubel, May 03 2023 *)
-
SageMath
def A120101(n,k): return lcm(range(1,2*n+3))/((k+1)*(k+2)*catalan_number(k+1)) flatten([[A120101(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 03 2023
Formula
Number triangle T(n,k) = [k<=n] * lcm(1,...,2n+2)/((k+1)*binomial(2k+2, k+1)).
Comments