cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Asher Auel

Asher Auel's wiki page.

Asher Auel has authored 155 sequences. Here are the ten most recent ones:

A057529 Numbers n with property that n is divisible by the number of divisors of n and by the sum of the digits of n.

Original entry on oeis.org

1, 2, 8, 9, 12, 18, 24, 36, 40, 60, 72, 80, 84, 108, 132, 152, 156, 180, 204, 225, 228, 240, 252, 288, 360, 372, 396, 441, 444, 448, 450, 468, 480, 504, 516, 600, 612, 640, 684, 720, 732, 792, 804, 828, 864, 880, 882, 936, 972, 1016, 1040, 1044, 1056, 1116
Offset: 1

Author

Asher Auel, Sep 03 2000

Keywords

Crossrefs

A057530 n is odd and divisible by number of divisors of n and sum of digits of n.

Original entry on oeis.org

1, 9, 225, 441, 1521, 2025, 2601, 12321, 40401, 62001, 99225, 103041, 251001, 321489, 585225, 893025, 1022121, 1108809, 1212201, 1320201, 1946025, 2368521, 2480625, 2772225, 3101121, 3744225, 4473225, 4862025, 5517801, 6125625
Offset: 1

Author

Asher Auel, Sep 03 2000

Keywords

Comments

For most values (except 9,2025 and 99225) number of divisors of n = sum of digits of n, see A057531.
The above comment is wrong: for 16 out of the first 34 terms of the sequence, the number of divisors of n does not equal the sum of the digits of n. - Harvey P. Dale, Dec 31 2015
Since A000005(n) is odd, n must be a square. - Robert Israel, Oct 31 2019

Crossrefs

Programs

  • Magma
    [k:k in [1..6000001 by 2]| IsIntegral(k/NumberOfDivisors(k)) and IsIntegral(k/&+Intseq(k))]; // Marius A. Burtea, Oct 31 2019
  • Maple
    filter:= proc(m) local n;
      n:= m^2;
      n mod numtheory:-tau(n) = 0 and n mod convert(convert(n,base,10),`+`) = 0
    end proc:
    map(`^`, select(filter, [seq(i,i=1..10000,2)]),2); # Robert Israel, Oct 31 2019
  • Mathematica
    Select[Range[1,5*10^6,2],Divisible[#,DivisorSigma[0,#]] && Divisible[ #,Total[ IntegerDigits[#]]]&] (* Harvey P. Dale, Dec 31 2015 *)

Extensions

More terms from Harvey P. Dale, Dec 31 2015

A057531 Numbers whose sum of digits and number of divisors are equal.

Original entry on oeis.org

1, 2, 11, 22, 36, 84, 101, 152, 156, 170, 202, 208, 225, 228, 288, 301, 372, 396, 441, 444, 468, 516, 525, 530, 602, 684, 710, 732, 804, 828, 882, 952, 972, 1003, 1016, 1034, 1070, 1072, 1106, 1111, 1164, 1236, 1304, 1308, 1425, 1472, 1476, 1521, 1524
Offset: 1

Author

Asher Auel, Sep 03 2000

Keywords

Comments

[A007953(n)/A000005(n) = c] AND [A000005(n)/A007953(n) = c], c an integer. - Ctibor O. Zizka, Jun 26 2009

Examples

			36 is a term as the sum of the digits of 36 is 3+6 = 9 and the number of divisors is 9 too.
		

Programs

  • Mathematica
    Select[ Range[ 1000 ], DivisorSigma[ 0, # ]==Plus@@IntegerDigits[ # ]& ] (* Harvey P. Dale, Feb 19 2004 *)

A057532 n is odd and sum of digits of n equals the numbers of divisors of n.

Original entry on oeis.org

1, 11, 101, 225, 301, 441, 525, 1003, 1111, 1425, 1521, 1575, 1911, 2015, 2101, 2325, 2475, 2541, 2601, 2925, 3225, 3311, 3825, 4275, 4301, 4851, 5025, 5175, 5445, 5733, 5775, 6075, 6321, 6525, 7315, 7605, 7623, 8325, 8925, 9225, 9555, 10003, 10021
Offset: 1

Author

Asher Auel, Sep 03 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10^4, 2], Plus @@ IntegerDigits[#] == DivisorSigma[0, #] &] (* Giovanni Resta, Apr 24 2017 *)

A057533 Values of n for which iteration of Chowla's function loops.

Original entry on oeis.org

48, 75, 92, 140, 146, 176, 195, 215, 255, 267, 287, 312, 332, 369, 386, 407, 411, 519, 527, 551, 627, 734, 744, 818, 972, 973, 984, 1027, 1050, 1078, 1096, 1149, 1175, 1185, 1387, 1408, 1472, 1474, 1535, 1575, 1648, 1651, 1784, 1792, 1880, 1888, 1891
Offset: 1

Author

Asher Auel, Sep 03 2000

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Crossrefs

Cf. A048050.
Cf. A005276 (subsequence). - Reinhard Zumkeller, Feb 09 2013

Programs

  • Haskell
    a057533 n = a057533_list !! (n-1)
    a057533_list = filter (\z -> p z [z]) [1..] where
       p x ts = y > 0 && (y `elem` ts || p y (y:ts)) where y = a048050 x
    -- Reinhard Zumkeller, Feb 09 2013

A059026 Table B(n,m) read by rows: B(n,m) = LCM(n,m)/n + LCM(n,m)/m - 1 for all 1<=m<=n.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 2, 6, 1, 5, 6, 7, 8, 1, 6, 3, 2, 4, 10, 1, 7, 8, 9, 10, 11, 12, 1, 8, 4, 10, 2, 12, 6, 14, 1, 9, 10, 3, 12, 13, 4, 15, 16, 1, 10, 5, 12, 6, 2, 7, 16, 8, 18, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 12, 6, 4, 3, 16, 2, 18, 4, 6, 10, 22, 1, 13, 14, 15, 16
Offset: 1

Author

Asher Auel, Dec 15 2000

Keywords

Comments

In an n X m box, a ball makes B(n,m) "bounces" starting at one corner until it reaches another corner, only allowed to travel on diagonal grid lines. B(n+2,n) = A022998(n+1) for all n >= 1. B(2n-1,n) = A016777(n) = 3n + 1 for all n >= 1 (central vertical).

Crossrefs

Programs

  • Maple
    B := (n,m) -> lcm(n,m)/n + lcm(n,m)/m - 1: seq(seq(B(n,m), n=1..m),m=1..15);

A059030 Fourth main diagonal of A059026: a(n) = B(n+3,n) = lcm(n+3,n)/(n+3) + lcm(n+3,n)/n - 1 for all n >= 1.

Original entry on oeis.org

4, 6, 2, 10, 12, 4, 16, 18, 6, 22, 24, 8, 28, 30, 10, 34, 36, 12, 40, 42, 14, 46, 48, 16, 52, 54, 18, 58, 60, 20, 64, 66, 22, 70, 72, 24, 76, 78, 26, 82, 84, 28, 88, 90, 30, 94, 96, 32, 100, 102, 34, 106, 108, 36, 112, 114, 38, 118, 120, 40, 124, 126, 42, 130
Offset: 1

Author

Asher Auel, Dec 15 2000

Keywords

Crossrefs

Programs

  • Maple
    B := (n,m) -> lcm(n,m)/n + lcm(n,m)/m - 1: seq(B(m+3,m),m=1..90);

Formula

G.f.: x(2x^3+2x^2+6x+4)/(1-x^3)^2.

A061806 Numbers n such that the iterative cycle: n -> sum of digits of n^2 has only three distinct elements.

Original entry on oeis.org

4, 5, 17, 26, 28, 32, 37, 40, 43, 44, 49, 50, 53, 62, 63, 64, 67, 73, 74, 76, 77, 82, 83, 86, 87, 88, 89, 91, 92, 93, 94, 97, 98, 107, 109, 113, 114, 116, 117, 118, 122, 124, 125, 126, 127, 128, 133, 137, 141, 143, 149, 154, 157, 158, 161, 164, 166, 167, 169, 170
Offset: 1

Author

Asher Auel, May 17 2001

Keywords

Examples

			4 -> 1+6 = 7 -> 4+9 = 13 -> 1+6+9 = 16 -> 2+5+6 = 13, thus {7,13,16} are the only distinct elements of the iterative cycle of 4.
		

Crossrefs

A061899 Fibonacci numbers that are not squarefree.

Original entry on oeis.org

8, 144, 2584, 46368, 75025, 832040, 14930352, 267914296, 4807526976, 12586269025, 86267571272, 225851433717, 1548008755920, 27777890035288, 498454011879264, 2111485077978050, 8944394323791464, 160500643816367088, 2880067194370816120, 4660046610375530309, 51680708854858323072
Offset: 1

Author

Asher Auel, May 20 2001

Keywords

Comments

a(n) <= Fibonacci(6n) since 4 | Fibonacci(6n). Using other residue classes it can be shown that a(n) << 1.134^n. How far can this method be taken? - Charles R Greathouse IV, Dec 13 2011

Examples

			144 and 2584 are Fibonacci numbers (A000045) and are not squarefree: 144 = 2^4*3^2, 2584 = 2^3*17*19.
		

Crossrefs

Programs

  • Mathematica
    Select[Fibonacci[Range[100]],!SquareFreeQ[#]&] (* Harvey P. Dale, May 01 2018 *)
  • PARI
    { n=0; h=g=1; for (i=0, 375, f=g + h; h=g; g=f; if (!issquarefree(f), write("b061899.txt", n++, " ", f)) ) } \\ Harry J. Smith, Jul 28 2009

Formula

a(n) = A000045(A037917(n)). - R. J. Mathar, Jan 13 2014

A061900 Triangular numbers that are not squarefree.

Original entry on oeis.org

28, 36, 45, 120, 136, 153, 171, 276, 300, 325, 351, 378, 496, 528, 630, 666, 780, 820, 990, 1035, 1128, 1176, 1225, 1275, 1431, 1485, 1540, 1596, 1953, 2016, 2080, 2556, 2628, 2775, 2850, 3160, 3240, 3321, 3828, 3916, 4005, 4095, 4560, 4656, 4753, 4851
Offset: 1

Author

Asher Auel, May 20 2001

Keywords

Examples

			36 and 45 are triangular numbers (A000217) and are not squarefree: 36 = (2^2)(3^2), 45 = (3^2)(5).
		

Crossrefs

Programs

  • PARI
    { n=t=0; for (i=1, 1926, t+=i; if (!issquarefree(t), write("b061900.txt", n++, " ", t)) ) } \\ Harry J. Smith, Jul 28 2009