cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Marius A. Burtea

Marius A. Burtea's wiki page.

Marius A. Burtea has authored 111 sequences. Here are the ten most recent ones:

A377383 Numbers k in A020487 with arithmetic derivative k' (A003415) in A020487.

Original entry on oeis.org

4, 256, 500, 625, 2500, 4225, 11664, 12800, 14580, 81920, 250000, 262144, 364500, 531441, 800000, 2125764, 4734976, 11943936, 27541504, 64000000, 84050000, 107868672, 156250000, 162542848, 195312500, 253472000, 512635136, 544195584, 607642880, 701146368, 770786560
Offset: 1

Author

Marius A. Burtea, Dec 05 2024

Keywords

Comments

Numbers of the form m = 2^(2^(2*k - 1)) are terms. Indeed, m is a square, so it is a term in A020487, and m' = 2^(2*k - 1)*2^(2^(2*k - 1) - 1) = 2^(2^( 2*k - 1) +2*k- 2) is also a square, so it is in A020487.

Examples

			4' = 4 = A020487(2), so 4 is a term.
256 = A020487(22), 256' = 1024 = A020487(48), so 256 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; ant:=func; [n:n in [2..100000]|ant(n) and ant(Floor(f(n)))];
  • Mathematica
    ad[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); ahQ[n_] := Divisible[DivisorSigma[2, n], DivisorSigma[1, n]]; Select[Range[2, 10^6], ahQ[#] && ahQ[ad[#]] &] (* Amiram Eldar, Dec 11 2024 *)

A377382 a(n) is the smallest number k for which exactly n of its divisors are interprime numbers (A024675).

Original entry on oeis.org

1, 4, 52, 12, 162, 36, 60, 120, 240, 300, 180, 600, 360, 1560, 720, 1260, 1440, 1620, 2520, 2880, 3240, 5040, 10920, 6300, 9360, 10080, 12960, 12600, 15840, 20160, 22680, 25200, 31680, 39600, 27720, 59400, 50400, 70560, 56700, 79200, 55440, 65520, 83160, 100800
Offset: 0

Author

Marius A. Burtea, Dec 05 2024

Keywords

Examples

			Because A024675(1) = 4 it follows that a(0) = 1 and a(1) = 4.
a(2) = 52 because 52 has the divisors 4 = A024675(1), 26 = A024675(8) and no number from 1 to 51 has exactly two interprime divisors.
		

Crossrefs

Programs

  • Magma
    ipr:=func; a:=[]; for n in [0..43] do k:=1; while  #[d:d in Divisors(k)|ipr(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a;
  • Mathematica
    d[n_] := DivisorSum[n, 1 &, CompositeQ[#] && NextPrime[#] + NextPrime[#, -1] == 2*# &]; seq[len_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len, i = d[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[44] (* Amiram Eldar, Dec 11 2024 *)

A377381 a(n) is the number of divisors of n that are interprime numbers (A024675).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 3, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 5, 0, 0, 1, 1, 0, 3, 0, 1, 3, 0, 0, 3, 0, 1, 0, 2, 0, 3, 0, 2, 0, 0, 0, 6, 0, 0, 2, 2, 0, 1, 0, 2, 1, 0, 0, 6, 0, 0, 1, 2, 0, 3, 0, 1, 2, 0, 0, 5, 0, 1, 0
Offset: 1

Author

Marius A. Burtea, Dec 05 2024

Keywords

Examples

			Because A024675(1) = 4 it follows that a(1) = a(2) = a(3) = 0 and a(4) = 1.
a(12) = 3 because it has the divisors 4 = A024675(1), 6 = A024675(2) and 12 = A024675(4).
		

Crossrefs

Cf. A024675.

Programs

  • Magma
    ipr:=func ;[#[d:d in Divisors(n)|ipr(d)]:n in [1..100]];
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, CompositeQ[#] && NextPrime[#] + NextPrime[#, -1] == 2*# &]; Array[a, 100] (* Amiram Eldar, Dec 11 2024 *)

A375325 a(n) is the number of divisors of n which are Loeschian numbers (A003136).

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 2, 2, 3, 1, 1, 4, 2, 2, 2, 3, 1, 3, 2, 2, 4, 1, 1, 4, 2, 2, 4, 4, 1, 2, 2, 3, 2, 1, 2, 6, 2, 2, 4, 2, 1, 4, 2, 2, 3, 1, 1, 6, 3, 2, 2, 4, 1, 4, 1, 4, 4, 1, 1, 4, 2, 2, 6, 4, 2, 2, 2, 2, 2, 2, 1, 6, 2, 2, 4, 4, 2, 4, 2, 3, 5, 1, 1, 8, 1, 2, 2, 2
Offset: 1

Author

Marius A. Burtea, Sep 15 2024

Keywords

Examples

			a(1) = 1 because 1 has only one divisor 1 = A003136(2).
a(3) = 2 because 3 has divisors 1 = A003136(2) and 3 = A003136(3).
a(9) = 3 because 9 has the divisors 1 = A003136(2), 3 = A003136(3) and 9 = A003136(6).
		

Crossrefs

Cf. A003136.

Programs

  • Magma
    f:=func; [#[d:d in Divisors(n)|f(d)]:n in [1..150]];

A375324 Numbers of the form 3^k + 2 that admit at least one divisor of the form 3^m + 2 with 1 <= m < k.

Original entry on oeis.org

245, 2189, 19685, 531443, 1594325, 129140165, 10460353205, 31381059611, 847288609445, 7625597484989, 68630377364885, 617673396283949, 1853020188851843, 5559060566555525, 450283905890997365, 36472996377170786405, 109418989131512359211, 2954312706550833698645
Offset: 1

Author

Marius A. Burtea, Sep 15 2024

Keywords

Comments

The sequence is inspired by problem 3, Balkan Mathematical Olympiad 27 April - 2 May 2024, Varna, Bulgaria, (see link).
The sequence is infinite because numbers of the form m = 3^(4*k + 1) + 2 are divisible by 5 = 3^1 + 2.

Examples

			245 = 3^5 + 2  and 245 = 49*5 = 49 * (3^1 + 2), so 245 is a term.
2189 = 3^7 + 2  and 2189 = 11*199 = 199 * (3^2 + 2), so 2189 is a term.
129140165 = 3^17 + 2 and 129140165 = 5*25828033 = (3^1 + 2)*25828033 or 129140165 = 11*11740015 = (3^2 + 2)*11740015, so 129140165 is a term.
		

Crossrefs

Cf. A168607.

Programs

  • Magma
    f:=func; [n:n in [3^a+2:a in [1..50]]|exists{d: d in Divisors(n)|d ne n and f(d-2) }];

A375323 Natural numbers k for which there exist distinct nonzero naturals a,b,c, such that k = a + b + c and (a + b)*(b + c)*(c + a) is a perfect cube.

Original entry on oeis.org

10, 19, 20, 30, 37, 38, 40, 46, 47, 50, 57, 60, 61, 66, 67, 68, 70, 74, 75, 76, 80, 90, 91, 92, 94, 95, 100, 101, 107, 109, 110, 111, 113, 114, 120, 122, 127, 129, 130, 131, 132, 133, 134, 136, 138, 139, 140, 141, 148, 150, 152, 160, 167, 169, 170, 171, 180, 182
Offset: 1

Author

Marius A. Burtea, Sep 15 2024

Keywords

Comments

The sequence is inspired by problem 1, Junior Balkan Team Selection Tests - Romania 2023, Brasov, 13.04.2023, (see link).
If k >= 1 is a term, then for any m >= 1 the number m*k is also a term.

Examples

			10 = 1 + 2 + 7 and (1 + 2)*(2 + 7)*(7 + 1) = 27*8 = 6^3, is a cube, so 10 is a term.
19 = 1 + 7 + 11 and (1 + 7)*(7 + 11)*(11 + 1) = 8*18*12 = 2^3*6^3 = 12^3, is a cube, so 19 is a term.
57 = 3 + 7 + 47 and (3 + 7)*(7 + 47)*(47 + 3) = 10*54*50 = 27*1000 = 30^3, is a cube. Also 57 = 3 + 21 + 33 and (3 + 21)*(21 + 33)*(33 + 3) = 24*54*36 = 36^2*36 = 36^3, is a cube.
		

Programs

  • Magma
    [n:n in [1..200]|exists(u){:a in [1..n-2],b in [1..n-2]|a lt b and #{a,b,n-a-b} eq 3 and n-a-b gt 0 and IsPower((n-a)*(n-b)*(a+b),3)}];
    
  • Python
    from itertools import count, islice
    from sympy import integer_nthroot
    def A375323_gen(startvalue=1): # generator of terms >= startvalue
        return (k for k in count(max(startvalue,1)) if any(integer_nthroot(a*(a*(m:=b-k)+b*(m-k)+k**2)-b*k*m,3)[1] for a in range(1,k//3) for b in range(a+1,k-a+1>>1)))
    A375323_list = list(islice(A375323_gen(),58)) # Chai Wah Wu, Oct 10 2024

A373969 The smallest number k whose divisors include exactly n Duffinian numbers (A003624).

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 256, 512, 576, 1152, 1600, 2304, 4608, 3600, 6300, 7200, 18900, 20736, 32725, 14400, 28800, 50400, 56700, 108900, 57600, 100800, 111321, 176400, 129600, 226800, 229075, 360000, 630000, 435600, 333963, 518400, 1374450, 871200, 1001889
Offset: 0

Author

Marius A. Burtea, Jul 12 2024

Keywords

Comments

Numbers of the form m = 2^(k+1), k >= 0, have exactly k divisors that are Duffinian numbers.

Examples

			Since A003624(1) = 4, a(0) = 1.
The numbers 2 and 3 have no divisors that are Duffinian numbers and 4 = A003624(1), so a(1) = 4.
		

Crossrefs

Programs

  • Magma
    f:=func; a:=[]; for n in [0..38] do k:=1; while #[d:d in Divisors(k)|f(d)] ne n do  k:=k+1; end while; Append(~a,k); end for; a;
  • Mathematica
    f[n_] := DivisorSum[n, 1 &, CompositeQ[#] && CoprimeQ[#, DivisorSigma[1, #]] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[30, 10^7] (* Amiram Eldar, Jul 19 2024 *)

A373892 a(n) is the smallest number that can be partitioned in exactly n ways as the sum of two Duffinian numbers (A003624).

Original entry on oeis.org

1, 8, 25, 43, 84, 71, 102, 160, 150, 219, 226, 196, 244, 350, 328, 300, 330, 354, 400, 386, 448, 408, 434, 390, 510, 536, 462, 546, 570, 624, 608, 740, 722, 690, 714, 770, 726, 660, 750, 804, 842, 858, 876, 870, 932, 914, 924, 840, 986, 1038, 966, 1108, 1050, 1056
Offset: 0

Author

Marius A. Burtea, Jul 12 2024

Keywords

Examples

			1 cannot be written as the sum of two Duffinian numbers, so a(0) = 1.
The numbers from 2 to 7 cannot be written as the sum of two Duffinian numbers and 8 = 4 + 4 = A003624(1) + A003624(1), so a(1) = 8.
25 = 4 + 21 = 9 + 16 and 4 = A003624(1), 9 = A003624(3), 16 = A003624(4), 21 = A003624(5) and the numbers 9 to 24 cannot be written in two ways as a sum of two Duffinian numbers. Thus a(2) = 25.
		

Crossrefs

Cf. A003624.

Programs

  • Magma
    f:=func; b:=[n: n in [1..2000] |f(n)]; a:=[]; for n in [0..60] do k:=1; while #RestrictedPartitions(k,2,Set(b)) ne n do k:=k+1; end while; Append(~a,k); end for; a;
  • Mathematica
    dufQ[n_] := CompositeQ[n] && CoprimeQ[n, DivisorSigma[1, n]]; f[n_] := Sum[If[dufQ[k] && dufQ[n - k], 1, 0], {k, 1, Floor[n/2]}]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[54, 2000] (* Amiram Eldar, Jul 19 2024 *)

A373968 a(n) is the number of divisors of n that are Duffinian numbers (A003624).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 1, 3, 0, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0, 3, 1, 2, 0, 1, 0, 2, 1, 2, 1, 0, 0, 1, 0, 0, 3, 5, 1, 0, 0, 1, 0, 1, 0, 4, 0, 0, 2, 1, 1, 1, 0, 3, 3, 0, 0, 2, 1, 0, 0, 2
Offset: 1

Author

Marius A. Burtea, Jul 12 2024

Keywords

Examples

			Since A003624(1) = 4 then a(1) = a(2) = a(3) = 0 and a(4) = 1.
a(8) = 2 because 8 has the divisors 4 = A003624(1) and 8 = A003624(2).
		

Crossrefs

Programs

  • Magma
    f:=func; [#[d:d in Divisors(k)|f(d)]:k in [1..100]];
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, CompositeQ[#] && CoprimeQ[#, DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, Jul 19 2024 *)

Formula

a(p^k) = k - 1, for p prime and k >= 1.

A372146 The smallest number k for which exactly n of its divisors are digitally balanced numbers in base 3 (A049354).

Original entry on oeis.org

1, 11, 105, 420, 924, 2772, 6240, 4620, 18480, 13860, 55440, 69300, 120120, 180180, 240240, 360360, 514800, 720720, 1029600, 1801800, 2162160, 2522520, 2282280, 5045040, 7207200, 4564560, 6846840, 12612600, 15135120, 11411400, 20540520, 29343600, 22822800, 49729680
Offset: 0

Author

Marius A. Burtea, May 23 2024

Keywords

Examples

			Since A049354(1) = 11 it follows that a(0) = 1.
The numbers 2 through 10 have no divisors in A049354 and A049354(1) = 11 = 102_3, so a(1) = 11.
105 has only two divisors in A049354, 15 = A049354(2) and 21 = A049354(4) and is the smallest with exactly two divisors in A049354, so a(2) = 105.
		

Crossrefs

Programs

  • Magma
    bal:=func; a:=[]; for n in [0..34] do k:=1; while #[d:d in Divisors(k)|bal(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a;
  • Maple
    N:= 15: # for terms before the first term >= 3^(N+1)
    db:= proc(n) option remember; local L,d,m;
      L:= convert(n,base,3);
      d:= nops(L);
      d mod 3 = 0 and 3*numboccur(0,L) = d and 3*numboccur(1,L) = d
    end proc:
    W:= Vector(3^(N+1),datatype=integer[4]):
    for d from 3 to N by 3 do
      for t from 3^(d-1) to 3^d-1 do
        if db(t) then
              J:= [seq(i, i=t..3^(N+1), t)];
              W[J]:= W[J] +~ 1;
        fi
    od od:
    M:= max(W):
    V:= Array(0..M): count:= 0:
    for i from 1 to 3^(N+1) while count < M+1 do
      if V[W[i]] = 0 then V[W[i]]:= i; count:= count+1 fi;
    od:
    L:= convert(V,list):
    if not member(0,L,'m') then m:= M+2 fi:
    L[1..m-1]; # Robert Israel, Jun 03 2024
  • Mathematica
    balQ[n_, b_] := balQ[n, b] = MinMax@ Differences@ DigitCount[n, b] == {0, 0}; f[n_] := DivisorSum[n, 1 &, balQ[#, 3] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[12, 10^5] (* Amiram Eldar, Jun 03 2024 *)