A373969 The smallest number k whose divisors include exactly n Duffinian numbers (A003624).
1, 4, 8, 16, 32, 64, 128, 256, 512, 576, 1152, 1600, 2304, 4608, 3600, 6300, 7200, 18900, 20736, 32725, 14400, 28800, 50400, 56700, 108900, 57600, 100800, 111321, 176400, 129600, 226800, 229075, 360000, 630000, 435600, 333963, 518400, 1374450, 871200, 1001889
Offset: 0
Keywords
Examples
Since A003624(1) = 4, a(0) = 1. The numbers 2 and 3 have no divisors that are Duffinian numbers and 4 = A003624(1), so a(1) = 4.
Programs
-
Magma
f:=func
; a:=[]; for n in [0..38] do k:=1; while #[d:d in Divisors(k)|f(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a; -
Mathematica
f[n_] := DivisorSum[n, 1 &, CompositeQ[#] && CoprimeQ[#, DivisorSigma[1, #]] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[30, 10^7] (* Amiram Eldar, Jul 19 2024 *)
Comments