A358890 a(n) is the first term of the first maximal run of n consecutive numbers with increasing greatest prime factors.
14, 4, 1, 8, 90, 168, 9352, 46189, 2515371, 721970, 6449639, 565062156, 11336460025, 37151747513, 256994754033, 14037913234203
Offset: 1
Examples
a(7) = 9352 because the first sequence of seven consecutive numbers with increasing greatest prime factors is 9352=167*7*2^3, 9353=199*47, 9354=1559*3*2, 9355=1871*5, 9356=2339*2^2, 9357=3119*3, and 9358=4679*2. [Corrected by _Jon E. Schoenfield_, Sep 21 2022]
Programs
-
Maple
V:= Vector(11): count:= 0: a:= 1: m:= 1: w:= 1: for k from 2 while count < 11 do v:= max(numtheory:-factorset(k)); if v > m then m:= v else if V[k-a] = 0 then V[k-a]:= a; count:= count+1; fi; a:= k; m:= v; fi od: convert(V,list); # Robert Israel, Dec 05 2022
-
Python
from sympy import factorint def A358890(n): m = 1 gpf1 = 1 k = 1 while 1: while 1: gpf2 = max(factorint(m+k)) if gpf2 < gpf1: break gpf1 = gpf2 k += 1 if k == n: return m m += k gpf1 = gpf2 k = 1 # Pontus von Brömssen, Dec 05 2022
Formula
Extensions
More terms from Don Reble, Jan 17 2003
Corrected by Jud McCranie, Feb 11 2003
a(14)-a(15) from Giovanni Resta, Jul 25 2013
Name edited, a(1) and a(2) corrected by Pontus von Brömssen, Dec 05 2022
a(16) from Martin Ehrenstein, Dec 07 2022
Comments