Jud McCranie has authored 398 sequences. Here are the ten most recent ones:
A383890
Index of record gaps between totient numbers.
Original entry on oeis.org
1, 2, 7, 30, 85, 257, 1031, 2493, 3288, 7604, 13392, 22663, 26818, 31377, 110175, 186971, 400432, 890621, 1536566, 17176199, 27501485, 102834105, 173246634, 182261294, 214104745, 268935021, 1781734397, 4010389565, 6213586719
Offset: 1
A002202(8)-A002202(7) = 4, which is greater than A002202(i+i)-A002202(i) for all i<7, so 7 is in the sequence.
Original entry on oeis.org
1, 2, 4, 6, 10, 12, 16, 18, 20, 22, 24, 26, 28, 32, 36, 40, 44, 50, 60, 64, 72, 74, 76, 78, 80, 90, 96, 108, 112
Offset: 1
A375122
A cycle of length 5 when iterating x <- phi(sigma(x)).
Original entry on oeis.org
6634509269055173050761216000, 7521613519844726223667200000, 7946886558074859593662464000, 7794495412499746337587200000, 7970172471593905204651622400
Offset: 1
A375014
A cycle of length 6 when iterating x <- phi(sigma(x)).
Original entry on oeis.org
27648, 30976, 54432, 48384, 55296, 34560
Offset: 1
phi(sigma(27648)) = 30976, ... phi(sigma(34560)) = 27648, so 27648 is in the sequence.
A375013
A cycle of length 6 when iterating x <- phi(sigma(x)).
Original entry on oeis.org
1800, 2880, 3024, 3840, 3456, 2560
Offset: 1
phi(sigma(1800)) = 2880, ... phi(sigma(2560)) = 1800, so 1800 is in the sequence.
A375012
A cycle of length 5 when iterating x <- phi(sigma(x)).
Original entry on oeis.org
339026688000000, 377975808000000, 424639621324800, 483184764518400, 453984583680000
Offset: 1
phi(sigma(339026688000000)) = 377975808000000, ... phi(sigma(453984583680000)) = 339026688000000, so 339026688000000 is in the sequence.
A373739
a(n) is the smallest number that is in a cycle of length n when iterating x <- phi(sigma(x)).
Original entry on oeis.org
16 -> 24 -> 30 -> 16, 16 is the smallest member of any cycle of length 3, so a(3)=16.
A373454
Iterate the function x <- phi(sigma(x)). The sequence has the smallest member of cycles of length 4.
Original entry on oeis.org
576, 41472, 2142720000, 3233260800
Offset: 1
576 -> 1512 -> 1280 -> 864 -> 576, so 576 (the smallest term) is in the sequence.
-
isok(x) = my(y = eulerphi(sigma(x))); if (y > x, my(z = eulerphi(sigma(y))); if (z>x, x == eulerphi(sigma(eulerphi(sigma(z)))))); \\ Michel Marcus, Jun 07 2024
A373435
Iterate the function x <- phi(sigma(x)). The sequence lists the smaller member of cycles of length 2.
Original entry on oeis.org
4, 48, 72, 432, 1728, 10368, 184320, 1658880, 6220800, 10222080, 12856320000
Offset: 1
phi(sigma(4)) = 6 and phi(sigma(6)) = 4, so 4 (the smallest term) is in the sequence.
-
Select[Range[10^6], # == EulerPhi[DivisorSigma[1,EulerPhi[DivisorSigma[1,#]]]] && # < EulerPhi[DivisorSigma[1,#]]&] (* Stefano Spezia, Jun 07 2024 *)
-
isok(x) = my(y = eulerphi(sigma(x))); if (y > x, x == eulerphi(sigma(y))); \\ Michel Marcus, Jun 06 2024
A373453
Iterate the function x <- phi(sigma(x)). The sequence has the smallest member of cycles of length 3.
Original entry on oeis.org
16, 1200, 15552, 67392, 272160, 69672960000
Offset: 1
16 -> 30 -> 24 -> 16, so 16 (the smallest term) is in the sequence.
-
isok(x) = my(y = eulerphi(sigma(x))); if (y > x, my(z = eulerphi(sigma(y))); if (z > x, x == eulerphi(sigma(z)))); \\ Michel Marcus, Jun 07 2024
Comments