cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048050 Chowla's function: sum of divisors of n except for 1 and n.

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 6, 3, 7, 0, 15, 0, 9, 8, 14, 0, 20, 0, 21, 10, 13, 0, 35, 5, 15, 12, 27, 0, 41, 0, 30, 14, 19, 12, 54, 0, 21, 16, 49, 0, 53, 0, 39, 32, 25, 0, 75, 7, 42, 20, 45, 0, 65, 16, 63, 22, 31, 0, 107, 0, 33, 40, 62, 18, 77, 0, 57, 26, 73, 0, 122, 0, 39, 48, 63, 18, 89
Offset: 1

Views

Author

Keywords

Comments

a(n) = 0 if and only if n is a noncomposite number (cf. A008578). - Omar E. Pol, Jul 31 2012
If n is semiprime, a(n) = A008472(n). - Wesley Ivan Hurt, Aug 22 2013
If n = p*q where p and q are distinct primes then a(n) = p+q.
If k,m > 1 are coprime, then a(k*m) = a(k)*a(m) + (m+1)*a(k) + (k+1)*a(m) + k + m. - Robert Israel, Apr 28 2015
a(n) is also the total number of parts in the partitions of n into equal parts that contain neither 1 nor n as a part (see example). More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that contain neither k nor k*n as a part. - Omar E. Pol, Nov 24 2019
Named after the Indian-American mathematician Sarvadaman D. S. Chowla (1907-1995). - Amiram Eldar, Mar 09 2024

Examples

			For n = 20 the divisors of 20 are 1,2,4,5,10,20, so a(20) = 2+4+5+10 = 21.
On the other hand, the partitions of 20 into equal parts that contain neither 1 nor 20 as a part are [10,10], [5,5,5,5], [4,4,4,4,4], [2,2,2,2,2,2,2,2,2,2]. There are 21 parts, so a(20) = 21. - _Omar E. Pol_, Nov 24 2019
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 92.

Crossrefs

Programs

  • Haskell
    a048050 1 = 0
    a048050 n = (subtract 1) $ sum $ a027751_row n
    -- Reinhard Zumkeller, Feb 09 2013
    
  • Magma
    A048050:=func< n | n eq 1 or IsPrime(n) select 0 else &+[ a: a in Divisors(n) | a ne 1 and a ne n ] >; [ A048050(n): n in [1..100] ]; // Klaus Brockhaus, Mar 04 2011
    
  • Maple
    A048050 := proc(n) if n > 1 then numtheory[sigma](n)-1-n ; else 0; end if; end proc:
  • Mathematica
    f[n_]:=Plus@@Divisors[n]-n-1; Table[f[n],{n,100}] (*Vladimir Joseph Stephan Orlovsky, Sep 13 2009*)
    Join[{0},DivisorSigma[1,#]-#-1&/@Range[2,80]] (* Harvey P. Dale, Feb 25 2015 *)
  • PARI
    a(n)=if(n>1,sigma(n)-n-1,0) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from sympy import divisors
    def a(n): return sum(divisors(n)[1:-1]) # Indranil Ghosh, Apr 26 2017
    
  • Python
    from sympy import divisor_sigma
    def A048050(n): return 0 if n == 1 else divisor_sigma(n)-n-1 # Chai Wah Wu, Apr 18 2021

Formula

a(n) = A000203(n) - A065475(n).
a(n) = A001065(n) - 1, n > 1.
For n > 1: a(n) = Sum_{k=2..A000005(n)-1} A027750(n,k). - Reinhard Zumkeller, Feb 09 2013
a(n) = A000203(n) - n - 1, n > 1. - Wesley Ivan Hurt, Aug 22 2013
G.f.: Sum_{k>=2} k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Jan 22 2017

A005276 Betrothed (or quasi-amicable) numbers.

Original entry on oeis.org

48, 75, 140, 195, 1050, 1575, 1648, 1925, 2024, 2295, 5775, 6128, 8892, 9504, 16587, 20735, 62744, 75495, 186615, 196664, 199760, 206504, 219975, 266000, 309135, 312620, 507759, 526575, 544784, 549219, 573560, 587460, 817479, 1000824, 1057595, 1081184
Offset: 1

Views

Author

Keywords

Comments

Members of a pair (m,n) such that sigma(m) = sigma(n) = m+n+1, where sigma = A000203. - M. F. Hasler, Nov 04 2008
Also members of a pair (m,k) such that m = sum of nontrivial divisors of k and k = sum of nontrivial divisors of m. - Juri-Stepan Gerasimov, Sep 11 2009
Also numbers that are terms of cycles when iterating Chowla's function A048050. - Reinhard Zumkeller, Feb 09 2013
From Amiram Eldar, Mar 09 2024: (Start)
The first pair, (48, 75), was found by Nasir (1946).
Lehmer (1948) in a review of Nasir's paper, noted that "the pair (48, 75) behave like amicable numbers".
Makowski (1960) found the next 2 pairs, and called them "pairs of almost amicable numbers".
The next 6 pairs were found by independently by Garcia (1968), who named them "números casi amigos" and Lal and Forbes (1971), who named them "reduced amicable pairs".
Beck and Wajar (1971) found 6 more pairs, but missed the 15th and 16th pairs, (526575, 544784) and (573560, 817479).
Hagis and Lord (1977) found the first 46 pairs. They called them "quasi-amicable numbers", after Garcia (1968).
Beck and Wajar (1993) found the next 33 pairs.
According to Guy (2004; 1st ed., 1981), the name "betrothed numbers" was proposed by Rufus Isaacs. (End)

References

  • Mariano Garcia, Números Casi Amigos y Casi Sociables, Revista Annal, año 1, October 1968, Asociación Puertorriqueña de Maestros de Matemáticas.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B5, pp. 91-92.
  • D. H. Lehmer, Math. Rev., Vol. 8 (1948), p. 445.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A057533.

Programs

  • Haskell
    a005276 n = a005276_list !! (n-1)
    a005276_list = filter p [1..] where
       p z = p' z [0, z] where
         p' x ts = if y `notElem` ts then p' y (y:ts) else y == z
                   where y = a048050 x
    -- Reinhard Zumkeller, Feb 09 2013
  • Mathematica
    bnoQ[n_]:=Module[{dsn=DivisorSigma[1,n],m,dsm},m=dsn-n-1; dsm= DivisorSigma[ 1,m];dsm==dsn==n+m+1]; Select[Range[2,1100000],bnoQ] (* Harvey P. Dale, May 12 2012 *)
  • PARI
    isA005276(n) = { local(s=sigma(n)); s>n+1 & sigma(s-n-1)==s }
    for( n=1, 10^6, isA005276(n) & print1(n",")) \\ M. F. Hasler, Nov 04 2008
    

Formula

Equals A003502 union A003503. - M. F. Hasler, Nov 04 2008

Extensions

Extended by T. D. Noe, Dec 29 2011
Showing 1-2 of 2 results.