A192993 Numbers that are in more than one way the concatenation of the decimal representation of two nonzero squares.
164, 1441, 1625, 1961, 2564, 4841, 12116, 14449, 16400, 25625, 46241, 48464, 115625, 116641, 144100, 148841, 160025, 162500, 163844, 169169, 184964, 193636, 196100, 256400, 361225, 368649, 466564, 484100, 493025, 961009, 973441, 1166464
Offset: 1
Examples
2564 is the concatenation of 256 and 4 as well as of 25 and 64; 256, 4, 25, 64 are squares, so 2564 is a term.
Links
- Klaus Brockhaus, Table of n, a(n) for n = 1..100 (terms < 40000000)
Programs
-
Haskell
import Data.List (findIndices) a192993 n = a192993_list !! (n-1) a192993_list = findIndices (> 1) $ map a193095 [0..] -- Reinhard Zumkeller, Jul 17 2011
-
Magma
SplitToSquares:=function(n); V:=[]; S:=Intseq(n); for j in [1..#S-1] do A:=[ S[k]: k in [1..j] ]; a:=Seqint(A); B:=[ S[k]: k in [j+1..#S] ]; b:=Seqint(B); if a gt 0 and A[#A] gt 0 and IsSquare(a) and IsSquare(b) then Append(~V, []); end if; end for; return V; end function; [ p: p in [1..1200000] | #P gt 1 where P is SplitToSquares(p) ]; /* to obtain the splittings replace " p: " with "
: " */
-
Mathematica
f@n_ := DeleteDuplicates@ Select[First@# & /@ Select[Partition[ Sort@(FromDigits@Flatten@IntegerDigits@# & /@ Tuples[Range@Sqrt[10^(n - 1) - 1]^2, {2}]), 2, 1], Differences@# == {0} &], # < 10^n &]; f@7 (* Hans Rudolf Widmer, Jun 12 2023 *) (* Numbers with at most n digits that are in more than one way the concatenation of the decimal representation of two nonzero squares. *)
Comments