cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Klaus Brockhaus

Klaus Brockhaus's wiki page.

Klaus Brockhaus has authored 1504 sequences. Here are the ten most recent ones:

A192993 Numbers that are in more than one way the concatenation of the decimal representation of two nonzero squares.

Original entry on oeis.org

164, 1441, 1625, 1961, 2564, 4841, 12116, 14449, 16400, 25625, 46241, 48464, 115625, 116641, 144100, 148841, 160025, 162500, 163844, 169169, 184964, 193636, 196100, 256400, 361225, 368649, 466564, 484100, 493025, 961009, 973441, 1166464
Offset: 1

Author

Klaus Brockhaus and Zak Seidov, Jul 14 2011

Keywords

Comments

Subsequence of A191933.
If k is a term, then k followed by two zeros is also a term.
None of the terms < 40000000 is in more than two ways the concatenation of the decimal representation of two nonzero squares.
A038670 is a subsequence. - Reinhard Zumkeller, Jul 15 2011

Examples

			2564 is the concatenation of 256 and 4 as well as of 25 and 64; 256, 4, 25, 64 are squares, so 2564 is a term.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a192993 n = a192993_list !! (n-1)
    a192993_list = findIndices (> 1) $ map a193095 [0..]
    -- Reinhard Zumkeller, Jul 17 2011
  • Magma
    SplitToSquares:=function(n); V:=[]; S:=Intseq(n); for j in [1..#S-1] do A:=[ S[k]: k in [1..j] ]; a:=Seqint(A); B:=[ S[k]: k in [j+1..#S] ]; b:=Seqint(B); if a gt 0 and A[#A] gt 0 and IsSquare(a) and IsSquare(b) then Append(~V, []); end if; end for; return V; end function; [ p: p in [1..1200000] | #P gt 1 where P is SplitToSquares(p) ]; /* to obtain the splittings replace " p: " with " : " */
    
  • Mathematica
    f@n_ := DeleteDuplicates@
      Select[First@# & /@
        Select[Partition[
          Sort@(FromDigits@Flatten@IntegerDigits@# & /@
             Tuples[Range@Sqrt[10^(n - 1) - 1]^2, {2}]), 2, 1],
         Differences@# == {0} &], # <
    10^n &]; f@7 (* Hans Rudolf Widmer, Jun 12 2023 *) (* Numbers with at most n digits that are in more than one way the concatenation of the decimal representation of two nonzero squares. *)

A191933 Numbers that are the concatenation of the decimal representation of two nonzero squares.

Original entry on oeis.org

11, 14, 19, 41, 44, 49, 91, 94, 99, 116, 125, 136, 149, 161, 164, 169, 181, 251, 254, 259, 361, 364, 369, 416, 425, 436, 449, 464, 481, 491, 494, 499, 641, 644, 649, 811, 814, 819, 916, 925, 936, 949, 964, 981, 1001, 1004, 1009, 1100, 1121, 1144, 1169, 1196
Offset: 1

Author

Klaus Brockhaus, Jun 19 2011

Keywords

Comments

Complement of A193096; A193095(a(n)) > 0; A038670, A039686, A167535, A192993, A193097 and A193144 are subsequences. [Reinhard Zumkeller, Jul 17 2011]

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a191933 n = a191933_list !! (n-1)
    a191933_list = findIndices (> 0) $ map a193095 [0..]
    -- Reinhard Zumkeller, Jul 17 2011
  • Magma
    CheckSplits:=function(n); v:=false; S:=Intseq(n); for j in [1..#S-1] do A:=[ S[k]: k in [1..j] ]; a:=Seqint(A); B:=[ S[k]: k in [j+1..#S] ]; b:=Seqint(B); if a gt 0 and A[#A] gt 0 and IsSquare(a) and IsSquare(b) then v:=true; end if; end for; return v; end function; [ p: p in [1..1200] | CheckSplits(p) ];
    
  • Mathematica
    Take[Union[Flatten[Table[FromDigits[Flatten[{IntegerDigits[m^2], IntegerDigits[n^2]}]], {m, 20}, {n, 20}]]], 50] (* Alonso del Arte, Aug 11 2011 *)
    squareQ[n_] := IntegerQ[Sqrt[n]]; okQ[n_] := MatchQ[IntegerDigits[n], {a__ /; squareQ[FromDigits[{a}]], b__ /; First[{b}] > 0 && squareQ[FromDigits[ {b}]]}]; Select[Range[2000], okQ] (* Jean-François Alcover, Dec 13 2016 *)

A192618 Prime powers p^k with even exponents k > 0 such that (1 + p^k)/2 is prime.

Original entry on oeis.org

9, 25, 81, 121, 361, 625, 841, 2401, 3481, 3721, 5041, 6241, 10201, 14641, 17161, 19321, 28561, 32761, 39601, 73441, 83521, 121801, 143641, 167281, 201601, 212521, 271441, 279841, 323761, 326041, 398161, 410881, 436921, 546121, 564001, 674041
Offset: 1

Author

Klaus Brockhaus, Jul 05 2011

Keywords

Comments

Subsequence of A056798.
From R. J. Mathar, Jul 11 2011: (Start)
For odd k we first have the case k=1, where (1+p)/2 is either classified as A005383 or A176897.
For odd k >= 3, (1+p^k)/2 is not prime. [Sketch of proof: for p=2 it is not integer. Otherwise for odd k, (1+p^k)/(1+p) = Sum_{j=0..k-1} (-p)^j, an integer, so 1+p^k is a multiple of 1+p. For odd p, (1+p^k)/2 is a multiple of (1+p)/2 and therefore composite.] (End)

Crossrefs

Cf. A056798.

Programs

  • Magma
    e:=20; u:=1000; z:=Min(2^e, u^2); S:=[ q: p in PrimesUpTo(u), k in [2..e by 2] | q le z and IsEven(1+q) and IsPrime((1+q) div 2) where q is p^k ]; Sort(~S); S;
  • Mathematica
    Select[Union[Flatten[Table[Prime[n]^k, {n, 142}, {k, 0, 32, 2}]]], PrimeQ[(# + 1)/2] &] (* Alonso del Arte, Jul 05 2011 *)

A191859 The primes created by concatenation of anti-divisors in A191647.

Original entry on oeis.org

2, 3, 23, 347, 349, 311, 391627, 3471331, 384067, 2310175897, 239111323273399, 23167, 3784097136227, 235983149249, 3428116271, 37111677121283, 23293, 3471949133311, 231314228398154359, 378112153101159371, 2379127163381
Offset: 1

Author

Klaus Brockhaus, Jun 18 2011

Keywords

Comments

a(n) is the concatenation of the anti-divisors of A191647(n).

Examples

			A191647(6) = 16, the anti-divisors of 16 are 3, 11. Hence a(6) = 311.
A191647(8) = 46, the anti-divisors of 46 are 3, 4, 7, 13, 31. Hence a(8) = 3471331.
		

Crossrefs

Programs

  • Magma
    Antidivisors:=func< n | [ d: d in [2..n-1] | n mod d ne 0 and ( (IsEven(d) and 2*n mod d eq 0) or (IsOdd(d) and ((2*n-1) mod d eq 0 or (2*n+1) mod d eq 0)) ) ] >; CAD:=function(n); A:=Antidivisors(n); S:=[]; for k in [1..#A] do S:= Intseq(A[k]) cat S; end for; p:=Seqint(S); return p; end function; A191859List:=func< m | [ p: n in [1..m] | IsPrime(p) where p is CAD(n) ] >; A191859List(600);

A190758 Primes p such that x^41 = 2 has a solution mod p, and p is congruent to 1 mod 41.

Original entry on oeis.org

17467, 18287, 31817, 42641, 116359, 139483, 163673, 172283, 176383, 181549, 190979, 225829, 226813, 231323, 259531, 288313, 299137, 307009, 352109, 404507, 421891, 445097, 464777, 484621, 528163, 592861, 604997, 609179, 611393, 629843
Offset: 1

Author

Klaus Brockhaus, May 18 2011

Keywords

Crossrefs

Programs

  • PARI
    forprime(p=2, 700000, if(trap(, 0, sqrtn(Mod(2, p), 41); 1), if(p%41==1, print1(p, ", "))));

A186041 Numbers of the form 3*k + 2, 5*k + 3, or 7*k + 4.

Original entry on oeis.org

2, 3, 4, 5, 8, 11, 13, 14, 17, 18, 20, 23, 25, 26, 28, 29, 32, 33, 35, 38, 39, 41, 43, 44, 46, 47, 48, 50, 53, 56, 58, 59, 60, 62, 63, 65, 67, 68, 71, 73, 74, 77, 78, 80, 81, 83, 86, 88, 89, 92, 93, 95, 98, 101, 102, 103, 104, 107, 108, 109, 110, 113, 116, 118, 119, 122
Offset: 1

Author

Klaus Brockhaus, Feb 11 2011, Mar 09 2011

Keywords

Comments

n is in the sequence iff n is in A016789 or in A016885 or in A017029.
First differences are periodic with period length 57. Least common multiple of 3, 5, 7 is 105; number of terms <= 105 is 57.
Sequence is not essentially the same as A053726: a(n) = A053726(n-3) for 3 < n < 33, a(34)=62, A053726(34-3)=61.
Sequence is not essentially the same as A104275: a(n) = A104275(n-2) for 3 < n < 33, a(34)=62, A104275(34-3)=61.

Crossrefs

Programs

  • Magma
    IsA186041:=func< n | exists{ k: k in [0..n div 3] | n in [3*k+2, 5*k+3, 7*k+4] } >; [ n: n in [1..200] | IsA186041(n) ];
  • Mathematica
    Take[With[{no=50},Union[Join[3Range[0,no]+2,5Range[0,no]+3,7Range[0,no]+4]]],70]  (* Harvey P. Dale, Feb 16 2011 *)

Formula

a(n) = a(n-57) + 105.
a(n) = a(n-1) + a(n-57) - a(n-58).
G.f.: x*(x^57 + x^56 + x^55 + x^54 + 3*x^53 + 3*x^52 + 2*x^51 + x^50 + 3*x^49 + x^48 + 2*x^47 + 3*x^46 + 2*x^45 + x^44 + 2*x^43 + x^42 + 3*x^41 + x^40 + 2*x^39 + 3*x^38 + x^37 + 2*x^36 + 2*x^35 + x^34 + 2*x^33 + x^32 + x^31 + 2*x^30 + 3*x^29 + 3*x^28 + 2*x^27 + x^26 + x^25 + 2*x^24 + x^23 + 2*x^22 + 2*x^21 + x^20 + 3*x^19 + 2*x^18 + x^17 + 3*x^16 + x^15 + 2*x^14 + x^13 + 2*x^12 + 3*x^11 + 2*x^10 + x^9 + 3*x^8 + x^7 + 2*x^6 + 3*x^5 + 3*x^4 + x^3 + x^2 + x + 2) / ((x - 1)^2*(x^2 + x + 1)*(x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^36 - x^35 + x^33 - x^32 + x^30 - x^29 + x^27 - x^26 + x^24 - x^23 + x^21 - x^20 + x^18 - x^16 + x^15 - x^13 + x^12 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1)).

A186042 Numbers of the form 2*k + 1, 3*k + 2, or 5*k + 3.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31, 32, 33, 35, 37, 38, 39, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 77, 78, 79, 80, 81, 83, 85, 86, 87, 88, 89, 91, 92, 93, 95, 97
Offset: 1

Author

Klaus Brockhaus, Feb 11 2011, Mar 09 2011

Keywords

Comments

n is in the sequence iff n is in A005408 or in A016789 or in A016885.
First differences are periodic with period length 22. Least common multiple of 2, 3, 5 is 30; number of terms <= 30 is 22.

Crossrefs

Programs

  • Magma
    IsA186042:=func< n | exists{ k: k in [0..n div 2] | n in [2*k+1, 3*k+2, 5*k+3] } >; [ n: n in [1..100] | IsA186042(n) ];
    
  • Mathematica
    LinearRecurrence[{2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-1},{1,2,3,5,7,8,9,11,13,14,15,17,18,19,20,21,23,25,26,27,28,29},71] (* Ray Chandler, Jul 12 2015 *)
  • PARI
    isok(n) = (n % 2) || ((n % 3)==2) || ((n % 5)==3); \\ Michel Marcus, Jul 26 2017

Formula

a(n) = a(n-22) + 30.
a(n) = a(n-1) + a(n-22) - a(n-23).
G.f.: x*(x^21 + x^19 + x^17 + x^16 + x^15 + x^13 + x^11 + x^10 + x^8 + x^7 + x^6 + x^4 + x^3 + x^2 + 1) / ((x - 1)^2*(x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)*(x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)).

A182603 Number of conjugacy classes in GL(n,8).

Original entry on oeis.org

1, 7, 63, 504, 4088, 32697, 262080, 2096577, 16776648, 134213128, 1073737224, 8589897288, 68719439943, 549755515008, 4398046212672, 35184369697407, 281474974319672, 2251799794521144, 18014398490350584, 144115187922510840, 1152921504453534648
Offset: 0

Author

Klaus Brockhaus, Nov 23 2010

Keywords

Programs

  • Magma
    /* The program does not work for n>6: */ [1] cat [NumberOfClasses(GL(n, 8)): n in [1..6]];
  • Maple
    with(numtheory):
    b:= proc(n) b(n):= add(phi(d)*8^(n/d), d=divisors(n))/n-1 end:
    a:= proc(n) a(n):= `if`(n=0, 1,
           add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 03 2012
  • Mathematica
    b[n_] := Sum[EulerPhi[d]*8^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)

Formula

G.f.: prod((1-x^k)/(1-8*x^k),k=1..infinity).

Extensions

Extended by D. S. McNeil, Dec 06 2010
MAGMA code edited by Vincenzo Librandi, Jan 23 2013

A182604 Number of conjugacy classes in GL(n,9).

Original entry on oeis.org

1, 8, 80, 720, 6552, 58960, 531360, 4782160, 43045920, 387413208, 3486777120, 31380993360, 282429470960, 2541865231440, 22876791858720, 205891126722080, 1853020183479912, 16677181651254480, 150094635248646000, 1350851717237225040, 12157665458621220720
Offset: 0

Author

Klaus Brockhaus, Nov 23 2010

Keywords

Programs

  • Magma
    /* The program does not work for n>6: */ [1] cat [NumberOfClasses(GL(n, 9)): n in [1..6]];
    
  • Maple
    with(numtheory):
    b:= proc(n) b(n):= add(phi(d)*9^(n/d), d=divisors(n))/n-1 end:
    a:= proc(n) a(n):= `if`(n=0, 1,
           add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 03 2012
  • Mathematica
    b[n_] := Sum[EulerPhi[d]*9^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N);
    gf=prod(n=1,N, (1-x^n)/(1-9*x^n)  );
    v=Vec(gf)
    /* Joerg Arndt, Jan 24 2013 */

Formula

G.f.: Product_{k>=1} (1-x^k)/(1-9*x^k). - Alois P. Heinz, Nov 03 2012

Extensions

More terms from Alois P. Heinz, Nov 03 2012
MAGMA code edited by Vincenzo Librandi, Jan 24 2013

A182612 Number of conjugacy classes in GL(n,27).

Original entry on oeis.org

1, 26, 728, 19656, 531414, 14348152, 387419760, 10460332792, 282429516096, 7625596933890, 205891131543552, 5559060551656248, 150094635282119528, 4052555152616676888, 109418989131110078784, 2954312706539971597184, 79766443076861647780830
Offset: 0

Author

Klaus Brockhaus, Nov 23 2010

Keywords

Programs

  • Magma
    /* The program does not work for n>4: */ [1] cat [ NumberOfClasses(GL(n, 27)) : n in [1..4] ];
    
  • Maple
    with(numtheory):
    b:= proc(n) b(n):= add(phi(d)*27^(n/d), d=divisors(n))/n-1 end:
    a:= proc(n) a(n):= `if`(n=0, 1,
           add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 03 2012
  • Mathematica
    b[n_] := Sum[EulerPhi[d]*27^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N);
    gf=prod(n=1,N, (1-x^n)/(1-27*x^n)  );
    v=Vec(gf)
    /* Joerg Arndt, Jan 24 2013 */

Formula

G.f.: Product_{k>=1} (1-x^k)/(1-27*x^k). - Alois P. Heinz, Nov 03 2012

Extensions

More terms from Alois P. Heinz, Nov 03 2012
MAGMA code edited by Vincenzo Librandi, Jan 24 2013