cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: D. S. McNeil

D. S. McNeil's wiki page.

D. S. McNeil has authored 12 sequences. Here are the ten most recent ones:

A195264 Iterate x -> A080670(x) (replace x with the concatenation of the primes and exponents in its prime factorization) starting at n until reach 1 or a prime (which is then the value of a(n)); or a(n) = -1 if a prime is never reached.

Original entry on oeis.org

1, 2, 3, 211, 5, 23, 7, 23, 2213, 2213, 11, 223, 13, 311, 1129, 233, 17, 17137, 19
Offset: 1

Author

N. J. A. Sloane, Sep 14 2011, based on discussions on the Sequence Fans Mailing List by Alonso del Arte, Franklin T. Adams-Watters, D. S. McNeil, Charles R Greathouse IV, Sean A. Irvine, and others

Keywords

Comments

J. H. Conway offered $1000 for a proof or disproof for his conjecture that every number eventually reaches a 1 or a prime - see OEIS50 link. - N. J. A. Sloane, Oct 15 2014
However, James Davis has discovered that a(13532385396179) = -1. This number D = 13532385396179 = (1407*10^5+1)*96179 = 13*53^2*3853*96179 is clearly fixed by the map x -> A080670(x), and so never reaches 1 or a prime. - Hans Havermann, Jun 05 2017
The number n = 3^6 * 2331961591220850480109739369 * 21313644799483579440006455257 is a near-miss for another nonprime fixed point. Unfortunately here the last two factors only look like primes (they have no prime divisors < 10), but in fact both are composite. - Robert Gerbicz, Jun 07 2017
The number D' = 13^532385396179 maps to D and so is a much larger number with a(D') = -1. Repeating this process (by finding a prime prefix of D') should lead to an infinite sequence of counterexamples to Conway's conjecture. - Hans Havermann, Jun 09 2017
The first 47 digits of D' form a prime P = 68971066936841703995076128866117893410448319579, so if Q denotes the remaining digits of 13^532385396179 then D'' = P^Q is another counterexample. - Robert Gerbicz, Jun 10 2017
This sequence is different from A037274. Here 8 = 2^3 -> 23 (a prime), whereas in A037274 8 = 2^3 -> 222 -> ... -> 3331113965338635107 (a prime). - N. J. A. Sloane, Oct 12 2014
The value of a(20) is presently unknown (see A195265).

Examples

			4 = 2^2 -> 22 =2*11 -> 211, prime, so a(4) = 211.
9 = 3^2 -> 32 = 2^5 -> 25 = 5^2 -> 52 = 2^2*13 -> 2213, prime, so a(9)=2213.
		

Crossrefs

A variant of the home primes, A037271. Cf. A080670, A195265 (trajectory of 20), A195266 (trajectory of 105), A230305, A084318. A230627 (base-2), A290329 (base-3)

Programs

  • Mathematica
    f[1] := 1; f[n_] := Block[{p = Flatten[FactorInteger[n]]}, k = Length[p]; While[k > 0, If[p[[k]] == 1, p = Delete[p, k]]; k--]; FromDigits[Flatten[IntegerDigits[p]]]]; Table[FixedPoint[f, n], {n, 19}] (* Alonso del Arte, based on the program for A080670, Sep 14 2011 *)
    fn[n_] := FromDigits[Flatten[IntegerDigits[DeleteCases[Flatten[
    FactorInteger[n]], 1]]]];
    Table[NestWhile[fn, n, # != 1 && ! PrimeQ[#] &], {n, 19}] (* Robert Price, Mar 15 2020 *)
  • PARI
    a(n)={n>1 && while(!ispseudoprime(n), n=A080670(n));n} \\ M. F. Hasler, Oct 12 2014

A186915 T(n,k)=Number of (n+2)X(k+2) 0..6 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

2066505, 59969593, 59969593, 1276581035, 2974946682, 1276581035, 22000126445, 99241308567, 99241308567, 22000126445, 319741716426, 2536761070723, 4813465754996, 2536761070723, 319741716426, 4028133387613, 52666517720011
Offset: 1

Author

R. H. Hardin, general degree formula intuited by D. S. McNeil in the Sequence Fans Mailing List, Feb 28 2011

Keywords

Comments

Table starts
...........2066505.............59969593.............1276581035
..........59969593...........2974946682............99241308567
........1276581035..........99241308567..........4813465754996
.......22000126445........2536761070723........171334955820947
......319741716426.......52666517720011.......4805827783188400
.....4028133387613......921058887545363.....110909004238159456
....44902749582723....13921822487031205....2169936652932512523
...449959668016830...185414592506642580...36804096662464163093
..4103914508092780..2208956268019713255..550615265988952206164
.34409633745323847.23828517723857362267.7367827886026471340866

Examples

			Some solutions for 5X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..1..1..3..3....1..1..1..5....0..1..4..6....0..1..5..6....1..2..4..4
..1..4..5..5....5..5..5..6....0..3..2..5....1..5..6..0....5..6..0..1
		

Formula

Empirical: T(n,k) is a polynomial of degree 6k+77, for fixed k.
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.

A186851 Array read by antidiagonals: T(n,k) = number of n-step knight's tours on a (k+2)X(k+2) board summed over all starting positions.

Original entry on oeis.org

9, 16, 16, 25, 48, 16, 36, 96, 104, 16, 49, 160, 328, 208, 16, 64, 240, 664, 976, 400, 16, 81, 336, 1112, 2576, 2800, 800, 16, 100, 448, 1672, 5056, 9328, 8352, 1280, 16, 121, 576, 2344, 8320, 21480, 34448, 21664, 2208, 0, 144, 720, 3128, 12368, 39616, 91328
Offset: 1

Author

R. H. Hardin and D. S. McNeil in the Sequence Fans Mailing List, Feb 27 2011

Keywords

Comments

Here an n-step knight's tour is a directed path with n vertices (or a self-avoiding walk with n-1 steps). - Andrew Howroyd, Jan 02 2023

Examples

			Table starts:
   9   16     25      36      49      64      81     100    121    144 ...
  16   48     96     160     240     336     448     576    720    880 ...
  16  104    328     664    1112    1672    2344    3128   4024   5032 ...
  16  208    976    2576    5056    8320   12368   17200  22816  29216 ...
  16  400   2800    9328   21480   39616   63440   92656 127264 167264 ...
  16  800   8352   34448   91328  186544  322528  498320 712080 ...
  16 1280  21664  118480  372384  847520 1584576 2596480 ...
  16 2208  57392  405040 1508784 3846192 7777808 ...
   0 3184 135184 1290112 5807488 ...
   0 4640 317296 4089632 ...
  ...
Some n=3 solutions for 5X5:
  0 0 0 0 0    0 0 0 0 1    0 0 0 0 0    0 0 0 0 0
  0 0 0 0 0    0 0 2 0 0    0 0 0 0 0    0 0 0 0 0
  0 0 1 0 0    0 0 0 0 0    0 0 3 0 0    0 0 0 0 0
  0 0 0 3 0    0 3 0 0 0    2 0 0 0 0    3 0 0 0 1
  0 2 0 0 0    0 0 0 0 0    0 0 1 0 0    0 0 2 0 0
		

Crossrefs

Column 6 is A186441.
Cf. A289204.

Programs

  • PARI
    \\ G(n) gives polynomial valid for k >= 2*n-4.
    Knights={[1,2; 1,-2; -1,2; -1,-2; 2,1; 2,-1; -2,1; -2,-1]}
    G(n,f=i->'n-(i-2)) = {
      local(x=vector(n), y=vector(n));
      my(recurse(k)=
         forstep(i=2-k%2, k-1, 2, if(x[i]==x[k] && y[i]==y[k], return(0)));
         if (k==n, f(vecmax(x)-vecmin(x))*f(vecmax(y)-vecmin(y)), sum(i=1, 8, x[k+1] = x[k]+Knights[i,1]; y[k+1]=y[k]+Knights[i,2]; self()(k+1)) );
      );
      if(n==1, recurse(1), x[1]=1; y[1]=2; 8*recurse(2))
    }
    row(m,n)={my(p=if(n>=2*m-4, G(m,i->'x-(i-2)))); vector(n, k, if(k>=2*m-4, subst(p,'x, k), G(m, i->max(0, k+2-i))))} \\ Andrew Howroyd, Jan 02 2023

Formula

Empirical, for all rows: a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3,3,4,6,8,10 respectively for row in 1..6.
From Andrew Howroyd, Jan 02 2023: (Start)
The above empirical formula is correct. Equivalently T(m,n) for given m and n >= 2*m-4 is given by a quadratic polynomial in n. This is because a w X h rectangle can be placed on a k X k grid at integer coordinates in (k-w+1)*(k-h+1) ways when w and h are at most k and every knights path with m vertices spans such a rectangle with width and height at most 2*m - 1.
Sum_{i=2..(k+2)^2} T(i,k)/2 = A289204(k+2).
T(n,k) = 0 for n > (k-2)^2.
(End)

A186180 T(n,k)=Number of (n+2)X(k+2) 0..5 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

520017, 10084236, 10084236, 143369699, 311128593, 143369699, 1662436696, 6520730198, 6520730198, 1662436696, 16382439469, 105970767207, 188034884094, 105970767207, 16382439469, 140871930232, 1414199542732, 4041778238254
Offset: 1

Author

R. H. Hardin, General degree formula intuited by D. S. McNeil in the Sequence Fans Mailing List, Feb 13 2011

Keywords

Comments

Table starts
..........520017..........10084236............143369699............1662436696
........10084236.........311128593...........6520730198..........105970767207
.......143369699........6520730198.........188034884094.........4041778238254
......1662436696......105970767207........4041778238254.......111203560772547
.....16382439469.....1414199542732.......69471558136868......2391923493659465
....140871930232....16059530994398......995828085723859.....42174821764604242
...1078197169699...159099595031390....12251749347425002....629512200937395977
...7459396065112..1400823449171621...132151619698400257...8143852416376007571
..47221234070168.11121210203531892..1270399513311212137..92981285763140685886
.276218909139304.80539662788823416.11027904404610778911.950506396177707075676

Examples

			Some solutions for 5X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..3....0..0..0..0....0..0..0..0....0..0..0..3....0..0..0..0
..0..0..0..5....0..0..1..2....0..1..1..4....0..1..5..1....0..0..2..3
..0..1..1..0....1..2..0..2....3..1..4..1....5..4..4..5....0..2..5..1
		

Formula

Empirical: T(n,k) is a polynomial of degree 5k+50 in n, for fixed k.
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.

A186096 T(n,k)=Number of (n+2)X(k+2) 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

102251, 1252889, 1252889, 11258613, 22559052, 11258613, 83378583, 280102672, 280102672, 83378583, 531218757, 2743553694, 4527262140, 2743553694, 531218757, 2985984444, 22408644868, 55707179395, 55707179395, 22408644868, 2985984444
Offset: 1

Author

R. H. Hardin, General degree formula intuited by D. S. McNeil in the Sequence Fans Mailing List, Feb 12 2011

Keywords

Comments

Table starts
........102251.........1252889.........11258613...........83378583
.......1252889........22559052........280102672.........2743553694
......11258613.......280102672.......4527262140........55707179395
......83378583......2743553694......55707179395.......837192826927
.....531218757.....22408644868.....558643720724.....10064164793382
....2985984444....157927508610....4754203179765....101247852066065
...15084070635....983600385660...35285910378578....878623899164100
...69482992431...5510351270895..232998389350277...6723402580436327
..295278398390..28148281162513.1389861134920751..46135247077059665
.1168636004931.132536596243411.7581135805604097.287649593317228144

Examples

			Some solutions for 5X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..2....0..0..0..2....0..0..0..2....0..0..1..2....0..0..1..2
..0..1..2..1....1..1..2..2....1..1..2..0....1..2..4..4....0..2..1..2
..2..3..3..4....1..2..0..0....3..4..0..1....1..4..1..3....2..4..3..2
		

Formula

Empirical: T(n,k) is a polynomial of degree 4k+30 in n, for fixed k.
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.

A185477 T(n,k)=Number of (n+2)X(k+2) 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

1169, 4594, 4594, 13659, 21834, 13659, 34779, 76309, 76309, 34779, 79743, 225672, 308692, 225672, 79743, 169052, 594798, 1043186, 1043186, 594798, 169052, 336690, 1433903, 3097348, 3959167, 3097348, 1433903, 336690, 636698, 3212372, 8297059
Offset: 1

Author

R. H. Hardin, General degree formula intuited by D. S. McNeil in the Sequence Fans Mailing List, Jan 28 2011

Keywords

Comments

Table starts
....1169.....4594.....13659......34779......79743......169052.......336690
....4594....21834.....76309.....225672.....594798.....1433903......3212372
...13659....76309....308692....1043186....3097348.....8297059.....20411234
...34779...225672...1043186....3959167...12990375....37961900....100908633
...79743...594798...3097348...12990375...46410729...146203201....416227164
..169052..1433903...8297059...37961900..146203201...493061605...1497314456
..336690..3212372..20411234..100908633..416227164..1497314456...4845252741
..636698..6763143..46732687..247920339.1090826214..4179700035..14425457557
.1151966.13496424.100636591..570069808.2669230399.10893560939..40183952539
.2005704.25706057.205574323.1239033996.6166331968.26828743607.106069534256

Examples

			Some solutions for 5X4
..0..0..0..0....0..0..1..1....0..0..0..1....0..0..0..2....0..0..0..1
..0..0..0..2....1..1..1..2....0..0..0..1....1..1..1..2....0..0..1..2
..0..0..1..2....1..1..1..2....0..0..0..1....1..1..1..2....0..1..2..2
..0..1..1..2....1..1..2..1....1..1..2..1....1..1..1..2....0..2..0..0
..2..1..1..2....1..2..0..2....2..2..1..0....1..1..2..2....0..2..2..2
		

Formula

Empirical: T(n,k) is a polynomial of degree 2k+7 in n, for fixed k.
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.

A185435 T(n,k)=Number of (n+2)X(k+2) 0..7 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

6842284, 284037544, 284037544, 8653394212, 21536560306, 8653394212, 212298419684, 1090205284029, 1090205284029, 212298419684, 4370405405266, 41910604337378, 84722449466168, 41910604337378, 4370405405266
Offset: 1

Author

R. H. Hardin, General degree formula intuited by D. S. McNeil in the Sequence Fans Mailing List, Jan 27 2011

Keywords

Comments

Table starts
.............6842284..............284037544................8653394212
...........284037544............21536560306.............1090205284029
..........8653394212..........1090205284029............84722449466168
........212298419684.........41910604337378..........4772160687307074
.......4370405405266.......1297535366114472........209290512833668811
......77657199293322......33575010264022917.......7468756070356586903
....1216284173329482.....745543958045415621.....223694029250999654095
...17062128865116751...14492443009379677098....5755145891541173071730
..217083576402029968..250496452202647761530..129520045203909930078682
.2530473438240068012.3898612401674733619729.2587203198419699686906895

Examples

			Some solutions for 5X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..4....0..0..0..0....0..0..0..0....0..0..0..4
..0..1..1..2....0..0..2..3....0..1..4..5....0..0..5..6....0..0..6..7
..0..3..7..3....0..7..0..5....0..2..1..6....2..2..6..4....0..4..3..0
		

Formula

Empirical: T(n,k) is a polynomial of degree 7k+112, for fixed k
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.

A184574 T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

14178, 102445, 102445, 545662, 993538, 545662, 2430950, 6803631, 6803631, 2430950, 9496395, 37767705, 57374460, 37767705, 9496395, 33351260, 179122657, 380532059, 380532059, 179122657, 33351260, 107058241, 748499580, 2113138210
Offset: 1

Author

R. H. Hardin, general degree formula intuited by D. S. McNeil in the Sequence Fans Mailing List, Jan 17 2011

Keywords

Comments

Table starts
......14178......102445........545662........2430950.........9496395
.....102445......993538.......6803631.......37767705.......179122657
.....545662.....6803631......57374460......380532059......2113138210
....2430950....37767705.....380532059.....2943827443.....18803004899
....9496395...179122657....2113138210....18803004899....136680720320
...33351260...748499580...10202200416...103444456133....848542379467
..107058241..2816118529...43935544294...503785839330...4626643143791
..318063303..9696377100..171891306894..2213469458762..22587829272879
..883398416.30941723282..619309263773..8896632071640.100176548344077
.2312834051.92420016377.2076328840978.33064363109286.408222405584237

Examples

			Some solutions for 5X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..0....0..0..0..0
..0..0..1..2....0..0..1..1....0..0..1..1....0..0..0..2....0..0..1..2
..2..3..0..0....0..0..3..3....0..3..1..3....1..2..2..2....0..2..3..2
..2..3..0..1....0..1..2..2....1..3..3..3....3..2..3..0....0..3..3..1
		

Formula

Empirical: T(n,k) is a polynomial of degree 3k+16 in n, for fixed k.
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.

A184548 T(n,k)=Number of (n+2)X(k+2) binary arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

45, 89, 89, 147, 193, 147, 220, 340, 340, 220, 309, 537, 631, 537, 309, 415, 792, 1048, 1048, 792, 415, 539, 1114, 1627, 1837, 1627, 1114, 539, 682, 1513, 2413, 3024, 3024, 2413, 1513, 682, 845, 2000, 3461, 4774, 5313, 4774, 3461, 2000, 845, 1029, 2587, 4837
Offset: 1

Author

R. H. Hardin, general degree formula intuited by D. S. McNeil in the Sequence Fans Mailing List, Jan 16 2011

Keywords

Comments

Table starts
...45...89..147...220...309....415....539....682.....845....1029....1235
...89..193..340...537...792...1114...1513...2000....2587....3287....4114
..147..340..631..1048..1627...2413...3461...4837....6619....8898...11779
..220..537.1048..1837..3024...4774...7307..10909...15944...22867...32238
..309..792.1627..3024..5313...8989..14767..23648...36997...56634...84939
..415.1114.2413..4774..8989..16345..28844..49489...82648..134509..213640
..539.1513.3461..7307.14767..28844..54543..99872..177207..305112..510719
..682.2000.4837.10909.23648..49489..99872.194245..364432..660821.1160932
..845.2587.6619.15944.36997..82648.177207.364432..719905.1369596.2516995
.1029.3287.8898.22867.56634.134509.305112.660821.1369596.2725367.5225554

Examples

			Some solutions for 5X4
..0..0..0..1....0..0..0..1....0..0..0..0....0..0..0..1....0..0..0..0
..0..0..1..1....0..0..0..1....0..0..0..0....0..0..1..1....0..0..0..0
..0..0..1..1....0..0..1..1....0..0..0..0....0..0..1..1....0..0..0..0
..0..1..0..0....0..1..0..1....0..0..0..1....0..1..1..1....0..0..1..1
..1..1..0..0....1..1..0..1....1..1..1..0....0..1..1..1....1..1..0..1
		

Formula

Empirical: T(n,k) is a polynomial of degree k+2 in n, for fixed k.
Let T(n,k,z) be the number of (n+2)X(k+2) 0..z arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.
Then empirically T(n,k,z) is a polynomial of degree z*k + z*(z+1)*(z+5)/6 in n, for fixed k.

A180388 Number of permutations of 1..n with number of rises (p(i+1)>p(i)) different from number of rises in the inverse permutation.

Original entry on oeis.org

0, 0, 0, 0, 2, 24, 228, 2088, 19732, 197890, 2131060, 24729108, 309027560, 4148115048, 59611031304, 913915160628, 14897443573244, 257369478424890, 4698494631208500, 90393611677083892, 1828153614233855024, 38778554791649355232, 860921156414834534368
Offset: 0

Author

Leroy Quet, D. S. McNeil and R. H. Hardin in the Sequence Fans Mailing List Sep 01 2010

Keywords

Crossrefs

a(n) + A180389(n) = n! = A000142(n).

Extensions

More terms from Vaclav Kotesovec, Jun 10 2015
a(0)=0 prepended by Alois P. Heinz, Jun 10 2015