cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A184565 Number of (n+2)X(n+2) 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

14178, 993538, 57374460, 2943827443, 136680720320, 5891845723505, 236912838360594, 8847094859463950, 307617377912743450, 10100655820839334144, 321449766112998837176, 10305126469064160258992
Offset: 1

Views

Author

R. H. Hardin Jan 17 2011

Keywords

Comments

Diagonal of A184574

Examples

			Some solutions for 4X4
..0..0..0..0....0..0..0..2....0..0..0..2....0..0..0..0....0..0..0..0
..0..0..1..3....0..0..1..2....0..0..1..3....0..0..1..3....0..0..1..2
..0..2..3..2....1..1..3..3....0..0..2..2....2..2..3..3....0..2..2..2
..3..3..3..0....3..3..3..1....1..3..0..0....3..3..3..3....0..3..1..1
		

A184566 Number of (n+2)X3 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

14178, 102445, 545662, 2430950, 9496395, 33351260, 107058241, 318063303, 883398416, 2312834051, 5747404508, 13634816674, 31030883261, 68030181122, 144179542873, 296289041222, 591935421670, 1152308627603, 2190104262402
Offset: 1

Views

Author

R. H. Hardin Jan 17 2011

Keywords

Comments

Column 1 of A184574

Examples

			Some solutions for 4X3
..0..1..3....0..1..1....0..0..2....0..0..0....0..1..3....0..0..3....0..1..1
..0..2..3....0..1..2....0..1..2....1..1..3....0..3..3....0..1..3....1..1..1
..3..2..3....2..2..3....3..0..0....1..2..0....2..0..0....0..3..3....1..2..3
..3..3..1....2..3..1....3..3..1....3..0..0....3..1..3....2..0..1....2..1..0
		

Formula

Empirical: a(n) = (1/121645100408832000)*n^19
+ (53/3201186852864000)*n^18
+ (5743/2134124568576000)*n^17
+ (12931/62768369664000)*n^16
+ (621041/62768369664000)*n^15
+ (10734523/31384184832000)*n^14
+ (1720232317/188305108992000)*n^13
+ (127448011/658409472000)*n^12
+ (6294370109/1931334451200)*n^11
+ (18970604773/438939648000)*n^10
+ (4321841102639/9656672256000)*n^9
+ (17491957547611/4828336128000)*n^8
+ (1086794057312713/47076277248000)*n^7
+ (2752481070552527/23538138624000)*n^6
+ (1237909924891457/2615348736000)*n^5
+ (1921023328483453/1307674368000)*n^4
+ (249101413506019/77189112000)*n^3
+ (12857906145353/2806876800)*n^2
+ (288855292519/77597520)*n
+ 561

A184567 Number of (n+2)X4 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

102445, 993538, 6803631, 37767705, 179122657, 748499580, 2816118529, 9696377100, 30941723282, 92420016377, 260446479317, 696942824390, 1780351075904, 4360845287507, 10280777481167, 23403139892995
Offset: 1

Views

Author

R. H. Hardin Jan 17 2011

Keywords

Comments

Column 2 of A184574

Examples

			Some solutions for 6X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..2....0..0..0..0....0..0..0..2....0..0..0..2....0..0..0..2
..0..0..1..2....0..0..2..2....0..0..1..3....0..0..1..2....0..0..2..2
..0..0..2..3....0..2..1..3....0..2..1..2....0..2..2..3....0..0..2..3
..0..3..0..1....0..3..3..3....0..3..2..1....1..3..1..2....0..1..3..2
		

Formula

Empirical: a(n) = (1/33058844934635520000)*n^22
+ (1/126150474498048000)*n^21
+ (383/104267228921856000)*n^20
+ (92459/162193467211776000)*n^19
+ (5962883/128047474114560000)*n^18
+ (288007/118562476032000)*n^17
+ (141294389/1581762915532800)*n^16
+ (37042283/15021490176000)*n^15
+ (1207776039097/22596613079040000)*n^14
+ (94240607009/100429391462400)*n^13
+ (961611518503/70815596544000)*n^12
+ (2095086803171/12875563008000)*n^11
+ (254043967271918849/158176291553280000)*n^10
+ (2521958296395977/195279372288000)*n^9
+ (47247456680158789/564915326976000)*n^8
+ (423943476564191/980755776000)*n^7
+ (834770646644810789/470762772480000)*n^6
+ (512186492040784177/88921857024000)*n^5
+ (5358598443971017331/369581468256000)*n^4
+ (33365097125850071/1263526387200)*n^3
+ (4012922158232927/129060195264)*n^2
+ (473624985875/23279256)*n
+ 2037

A184568 Number of (n+2)X5 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

545662, 6803631, 57374460, 380532059, 2113138210, 10202200416, 43935544294, 171891306894, 619309263773, 2076328840978, 6531156334265, 19403953247374, 54753242158853, 147433311933367, 380373129645753, 943599791869542
Offset: 1

Views

Author

R. H. Hardin Jan 17 2011

Keywords

Comments

Column 3 of A184574

Examples

			Some solutions for 4X5
..0..0..0..3..3....0..0..0..0..1....0..0..0..1..1....0..0..0..0..1
..0..0..0..3..3....0..0..0..2..3....0..0..0..1..2....0..0..0..2..2
..0..0..0..3..3....0..0..2..2..1....0..0..0..3..3....0..0..1..1..2
..0..1..1..0..1....0..0..3..2..1....0..1..2..2..2....0..0..1..1..3
		

Formula

Empirical: a(n) = (1/19437606570590208000000)*n^25
+ (9661/620448401733239439360000)*n^24
+ (19289/8617338912961658880000)*n^23
+ (647623/1926858390475898880000)*n^22
+ (7818869/185785244260761600000)*n^21
+ (179204479/50048269882490880000)*n^20
+ (6120818579/29194824098119680000)*n^19
+ (143209419911/16133981738434560000)*n^18
+ (923628988921/3259390250188800000)*n^17
+ (7642143794531/1084637427793920000)*n^16
+ (243608939835379/1739939207086080000)*n^15
+ (1936163562822023/852215121838080000)*n^14
+ (304569580619323823/9942509754777600000)*n^13
+ (29005828878292128217/83517081940131840000)*n^12
+ (233821500453548659/70300574023680000)*n^11
+ (7270110226386747353/271159356948480000)*n^10
+ (2420495398281155097653/13444984782028800000)*n^9
+ (23339250455280961243/23518923816960000)*n^8
+ (12862196280962074967/2910169866240000)*n^7
+ (66716838431089951113047/4257578514309120000)*n^6
+ (473698445981492045742353/10841056402176000000)*n^5
+ (4365469476964635381733/46461670295040000)*n^4
+ (6119481830014897449583/41557382875008000)*n^3
+ (1591545230217707383/10601373182400)*n^2
+ (106282373513353/1274816400)*n
+ 5965

A184569 Number of (n+2)X6 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

2430950, 37767705, 380532059, 2943827443, 18803004899, 103444456133, 503785839330, 2213469458762, 8896632071640, 33064363109286, 114609983293024, 373179093576287, 1148351083047878, 3357036249298069, 9365408840621016
Offset: 1

Views

Author

R. H. Hardin Jan 17 2011

Keywords

Comments

Column 4 of A184574

Examples

			Some solutions for 4X6
..0..0..0..0..1..3....0..0..0..0..0..2....0..0..0..0..0..3....0..0..0..0..0..1
..0..0..0..0..3..3....0..0..0..0..0..2....0..0..0..0..0..3....0..0..0..0..2..2
..0..0..0..2..0..1....0..0..0..1..2..2....0..0..1..2..2..3....0..0..0..1..1..1
..0..0..0..3..2..2....0..0..2..3..2..1....0..0..2..2..3..0....0..0..2..1..1..2
		

Formula

Empirical: a(n) = (1877/33876482734634873389056000000)*n^28
+ (11987/622221111452477266329600000)*n^27
+ (737071/230452263500917506048000000)*n^26
+ (2523251/7445380820798873272320000)*n^25
+ (720529321/24817936069329577574400000)*n^24
+ (226209029/96693257412972380160000)*n^23
+ (428601636263/2517761630221841203200000)*n^22
+ (895861352717/88285148072713912320000)*n^21
+ (6657779572813/14013515567097446400000)*n^20
+ (513500327060663/29428382690904637440000)*n^19
+ (28902349506792719/56791615719289651200000)*n^18
+ (29102175898763483/2433926387969556480000)*n^17
+ (69715669922508077933/304002178262079897600000)*n^16
+ (142038276256570683601/39085994347981701120000)*n^15
+ (298469360258931891817/6204126086981222400000)*n^14
+ (3766091227509416251/7008426456514560000)*n^13
+ (72461481986205915365513/14197903929822412800000)*n^12
+ (2288207763441237912457/55316508817489920000)*n^11
+ (36755880863016765433108943/128749174272707788800000)*n^10
+ (27526974266867197736771411/16553465263633858560000)*n^9
+ (97026713608751439944355719/12042864940474368000000)*n^8
+ (268702236610212374702478103/8430005458332057600000)*n^7
+ (905845241244834660379823869/8976394701001728000000)*n^6
+ (9642800930818575777090611/38470263004293120000)*n^5
+ (1335942364702678794101791/2801275438241280000)*n^4
+ (437836547410214702956529/663029154051264000)*n^3
+ (23010191291418229189/38588998383936)*n^2
+ (1159084670787299/4015671660)*n
+ 15261

A184570 Number of (n+2)X7 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

9496395, 179122657, 2113138210, 18803004899, 136680720320, 848542379467, 4626643143791, 22587829272879, 100176548344077, 408222405584237, 1542895435045954, 5451380899694523, 18127035085729328, 57057694316853427
Offset: 1

Views

Author

R. H. Hardin Jan 17 2011

Keywords

Comments

Column 5 of A184574

Examples

			Some solutions for 4X7
..0..0..0..0..0..0..1....0..0..0..0..0..0..3....0..0..0..0..0..2..3
..0..0..0..0..0..1..2....0..0..0..0..0..2..3....0..0..0..0..0..2..3
..0..0..0..0..0..3..1....0..0..0..0..1..0..3....0..0..0..0..2..0..0
..0..0..0..0..2..2..3....0..0..0..0..1..3..2....0..0..0..0..2..3..0
		

Formula

Empirical: a(n) = (53/1256354263434365594763264000000)*n^31
+ (887251/53050571962438211727261696000000)*n^30
+ (168683833/53050571962438211727261696000000)*n^29
+ (41695943/107607651039428421353472000000)*n^28
+ (2966611997/87110955603346817286144000000)*n^27
+ (2731091581/1161479408044624230481920000)*n^26
+ (934969479473/6700842738718985945088000000)*n^25
+ (71784126942161/9381179834206580323123200000)*n^24
+ (3676674924849281/9381179834206580323123200000)*n^23
+ (563822102281853/31375183391995251916800000)*n^22
+ (83036861466787/117713530763618549760000)*n^21
+ (449635445808107101/19422732575997060710400000)*n^20
+ (477728343774895560181/757486570463885367705600000)*n^19
+ (3984914175553439894747/279073999644589345996800000)*n^18
+ (75296304543122414243729/279073999644589345996800000)*n^17
+ (70202812023470878658099/16416117626152314470400000)*n^16
+ (22342133059122888182221/390859943479817011200000)*n^15
+ (538093024334021462801389/830577379894611148800000)*n^14
+ (2442381065653362888003371/390188824071369523200000)*n^13
+ (58251363958080569432189063/1124661904676300390400000)*n^12
+ (3197480702491150929211393747/8690569263407775744000000)*n^11
+ (8235918337333023060582879371/3676779303749443584000000)*n^10
+ (303695701411023425123140222861/26175166948121038848000000)*n^9
+ (146703475487334161319713918707/2908351883124559872000000)*n^8
+ (1138074246303729762260088761137/6301429080103213056000000)*n^7
+ (382639794160479617211461259329/735166726012041523200000)*n^6
+ (6678667213399686650750546663/5672582762438592000000)*n^5
+ (6218970366747150808423568309/3063194691716839680000)*n^4
+ (76642858735900764443216317/30215185734621888000)*n^3
+ (57745583617616433273949/27977023828353600)*n^2
+ (32024932439911153349/36100888223400)*n
+ 35316

A184571 Number of (n+2)X8 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

33351260, 748499580, 10202200416, 103444456133, 848542379467, 5891845723505, 35627770917826, 191432663548535, 928188067899417, 4112020013610989, 16817412144178637, 64051659837968288, 228872310887087218
Offset: 1

Views

Author

R. H. Hardin Jan 17 2011

Keywords

Comments

Column 6 of A184574

Examples

			Some solutions for 4X8
..0..0..0..0..0..0..2..2....0..0..0..0..0..0..0..3....0..0..0..0..0..0..0..0
..0..0..0..0..0..0..2..3....0..0..0..0..0..0..2..3....0..0..0..0..0..0..0..1
..0..0..0..0..0..2..0..1....0..0..0..0..1..1..0..1....0..0..0..0..0..0..1..2
..0..0..0..0..1..3..0..3....0..0..0..0..1..2..1..1....0..0..0..0..0..2..1..0
		

Formula

Empirical: a(n) = (1/41634367755283133135585280000000)*n^34
+ (1601/148577547675716279032872960000000)*n^33
+ (542077/232996608855100528483368960000000)*n^32
+ (116777753/361443457326502101878046720000000)*n^31
+ (6080562217/187237312808605453155041280000000)*n^30
+ (1781455743577/707340959499176156363489280000000)*n^29
+ (719717589733/4573325169175707907522560000000)*n^28
+ (1306220268863/158383555642448758702080000000)*n^27
+ (3963468744882037/10453314672401618074337280000000)*n^26
+ (68586589630711/4288539352780151004856320000)*n^25
+ (357317876962793491/562870790052394819387392000000)*n^24
+ (490601448632399591/20847066298236845162496000000)*n^23
+ (3874026234161310389/4894528609151259299020800000)*n^22
+ (710832152721594474097/30299462818555414708224000000)*n^21
+ (976045901457707066617/1623185508136897216512000000)*n^20
+ (15386033688329449503493/1165363954559823642624000000)*n^19
+ (281743583253272622372034169/1138621918549924531666944000000)*n^18
+ (5353134759742300841592539/1353086058882857435136000000)*n^17
+ (103092441988364765692828075111/1908866157568991126618112000000)*n^16
+ (14326813312025505925268674433/22724597113916561031168000000)*n^15
+ (7903021423230805478367320683/1253194693782163292160000000)*n^14
+ (236775495736369578196358799151/4370114829599338659840000000)*n^13
+ (9193732496153533286175432221173/22943102855396527964160000000)*n^12
+ (3255573919420174151256147711347/1274616825299807109120000000)*n^11
+ (68439739709805838002894466449091/4886031163649260584960000000)*n^10
+ (132437631115418929945028905292687/2016457305633028177920000000)*n^9
+ (43705388600817390369710158307227/168038108802752348160000000)*n^8
+ (1266937711800607406615267159/1483701603471360000000)*n^7
+ (2418452375434800377101124575965119/1065991752717460208640000000)*n^6
+ (56154030486781961766245142082679/11844352807971780096000000)*n^5
+ (3072960621509500129944652477871/407972152274583536640000)*n^4
+ (139728569944966575024454759/16189371122007283200)*n^3
+ (946493352594223323198194773/147438915575423472000)*n^2
+ (2493598780438407349/1002802450650)*n
+ 75476

A184572 Number of (n+2)X9 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

107058241, 2816118529, 43935544294, 503785839330, 4626643143791, 35627770917826, 236912838360594, 1389863286849772, 7315301238941444, 35019093954902897, 154213012365058057, 630709975793568592
Offset: 1

Views

Author

R. H. Hardin Jan 17 2011

Keywords

Comments

Column 7 of A184574

Examples

			Some solutions for 4X9
..0..0..0..0..0..0..0..1..3....0..0..0..0..0..0..0..0..0
..0..0..0..0..0..0..1..2..3....0..0..0..0..0..0..0..0..3
..0..0..0..0..0..0..1..3..1....0..0..0..0..0..0..1..3..1
..0..0..0..0..0..0..2..0..3....0..0..0..0..0..0..3..3..2
		

Formula

Empirical: a(n) = (4793/452457366575488002837474673950720000000)*n^37
+ (51103/9570191067401626381991238696960000000)*n^36
+ (4917877/3785035885123130010866905251840000000)*n^35
+ (15705320153/77017251923374993264596159037440000000)*n^34
+ (403479410207/17366635237623772991036388802560000000)*n^33
+ (4851601752143/2368177532403241771504962109440000000)*n^32
+ (15462960490711/106264376453991617952145735680000000)*n^31
+ (2746274235427991/320849859228826304526478737408000000)*n^30
+ (10856490117519047/25464274541970341629085614080000000)*n^29
+ (6456752239990781/351231372992694367297732608000000)*n^28
+ (226622562233850109/321962091909969836689588224000000)*n^27
+ (475881640585627280657/19317725514598190201375293440000000)*n^26
+ (18685538511769681859/23115227111485013916175564800000)*n^25
+ (78436996080074747430437/3120555660050476878683701248000000)*n^24
+ (9085432735871849854181/12383157381152686026522624000000)*n^23
+ (150187159136899643608847/7635464630275964506472448000000)*n^22
+ (40977480814594448970681991/86535265809794264406687744000000)*n^21
+ (5226774037191381140326999133/519211594858765586440126464000000)*n^20
+ (13071005257064306496446488163/69893868538679982790017024000000)*n^19
+ (98722865942539034676454307634913/32710330476102231945727967232000000)*n^18
+ (694634392196058336866261194853/16468649202556001876705280000000)*n^17
+ (80254478670048450027363402644633/157481457999441767945994240000000)*n^16
+ (6421634521403488005941196166071713/1207357844662386887585955840000000)*n^15
+ (7550105556722752711894650772163617/157481457999441767945994240000000)*n^14
+ (121356034989018715751902496676123689/325057881255258008196218880000000)*n^13
+ (1815930478138841589986222979052727/722707739944990630871040000000)*n^12
+ (84748143544090618090953653122309/5798806216199122452480000000)*n^11
+ (201185582615958792018429209453875081/2743995101505424744513536000000)*n^10
+ (6973050061034384066468555069716721959/22104404984349254886359040000000)*n^9
+ (42410046291974983194824317540349467/36840674973915424810598400000)*n^8
+ (3288593362113975843795222673686912623/939515931225813237424128000000)*n^7
+ (396373545443656122094834534124529867533/45801401647258395324426240000000)*n^6
+ (20854343491187859889043913375883746431/1235910838100623365897216000000)*n^5
+ (22057820267586548673537627400084129/882793455786159547069440000)*n^4
+ (65189593181950361989190823489581/2452204043850443186304000)*n^3
+ (2022025625886313819557910577/110579186681567604000)*n^2
+ (224306318583025111397/34694360110800)*n
+ 151134

A184573 Number of (n+2)X10 0..3 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

318063303, 9696377100, 171891306894, 2213469458762, 22587829272879, 191432663548535, 1389863286849772, 8847094859463950, 50288280003912690, 259097398200707061, 1225103456113642803, 5371748111324539632
Offset: 1

Views

Author

R. H. Hardin Jan 17 2011

Keywords

Comments

Column 8 of A184574

Examples

			Some solutions for 4X10
..0..0..0..0..0..0..0..0..0..3....0..0..0..0..0..0..0..0..0..0
..0..0..0..0..0..0..0..0..2..3....0..0..0..0..0..0..0..1..1..3
..0..0..0..0..0..0..0..1..0..2....0..0..0..0..0..0..0..1..2..0
..0..0..0..0..0..0..0..2..2..1....0..0..0..0..0..0..0..2..0..0
		

Formula

Empirical: a(n) = (673/181350051998613446979077070127104000000000)*n^40
+ (965677/462442632596464289796646528824115200000000)*n^39
+ (55869007/98247885313534537758994500629299200000000)*n^38
+ (14692207/146742929700158271190532326686720000000)*n^37
+ (1129481833003/88045757820094962714319396012032000000000)*n^36
+ (35144498153879/27555061243696386479111070233395200000000)*n^35
+ (25401235273163749/247995551193267478311999632100556800000000)*n^34
+ (262126995417151/38389404209484129769659385774080000000)*n^33
+ (3596914274137699/9332719339520164616768323584000000000)*n^32
+ (539235358252563887/28829987350995986783538669158400000000)*n^31
+ (1116387366983689356767/1411739380606835739916506444595200000000)*n^30
+ (231485648220727758173/7842996558926865221758369136640000000)*n^29
+ (2322340559452286223827/2351723106124997067993513984000000000)*n^28
+ (81605062321920105148379/2704481572043746628192541081600000000)*n^27
+ (16599486295341432111403/19317725514598190201375293440000000)*n^26
+ (97625742346088765429/4211276194400103749910528000000)*n^25
+ (174888755958896985910044011/293699356240044882699642470400000000)*n^24
+ (88489208847914976941793254377/6130158229965825690569759784960000000)*n^23
+ (896113550321153560129112114503/2762205684648632919861472788480000000)*n^22
+ (2747951381674061199065405244271/414330852697294937979220918272000000)*n^21
+ (8785427708895423890367179641428077/72343482216988005043990953984000000000)*n^20
+ (23628790084724156964201017870485871/11993787841237485046766921318400000000)*n^19
+ (23265331627981998133937028213755823239/827571361045386468226917570969600000000)*n^18
+ (10553549822849284259060835463023491/30049795244930518091028234240000000)*n^17
+ (38827441360182895772263834450498494341/10141805895164049855722029056000000000)*n^16
+ (969627877078730019758713838729373991/26688962882010657515057971200000000)*n^15
+ (21703826536213623030401303969738892503/72441470679743213255157350400000000)*n^14
+ (4182327134423349818635798965138531349/1950347287531548049177313280000000)*n^13
+ (353946924402717018399904311295348912463/26595644829975655216054272000000000)*n^12
+ (137399484184209533572268883565100391029/1920796571053797321159475200000000)*n^11
+ (6309671962132576848901067927195231043092297/18994757291151001708946050252800000000)*n^10
+ (675760525354911330698025546025089536579/509789513986876052306657280000000)*n^9
+ (141304268507668371503738345865177547189957/31406675415262899651035136000000000)*n^8
+ (775423336961362770909286840964803808189/60711409590907814465126400000000)*n^7
+ (4008183003568711530630026347248376762093/135412839652763951393955840000000)*n^6
+ (938628647546903640486120815258199628913/17302751733408727122561024000000)*n^5
+ (226211122595937892873492340247370663691/2996018342016338711123251200000)*n^4
+ (216326320315708236509529777041751493/2873165738044769266619520000)*n^3
+ (496967716499616196779836511031/10279294973506383552000)*n^2
+ (759115441294391109931/48134517631200)*n
+ 286599
Showing 1-9 of 9 results.