cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Robert Gerbicz

Robert Gerbicz's wiki page.

Robert Gerbicz has authored 16 sequences. Here are the ten most recent ones:

A262355 Minimal number of circles needed to intersect all the points of an n X n grid.

Original entry on oeis.org

1, 1, 3, 3, 5, 6, 8, 8, 11, 11, 14, 15
Offset: 1

Author

Robert Gerbicz, Sep 19 2015

Keywords

Comments

The n=2 and n=8 cases each have a unique solution.
a(13)=18 or 19; a(14)=19 or 20.
Lim a(n)/n^2=0. Moreover a(n)=O(n^2/sqrt(log(n))) is also true: use concentric circles with center=(0,0), for the squared distance to the points d^2=x^2+y^2<2*n^2 but with Landau's theorem there are only O(u/sqrt(log(u))) integers up to u which are in the form of x^2+y^2, use this for u=2*n^2 to get the theorem (obviously r=d for the radius). A closer center to the grid's center could give fewer circles, for example use center=(floor(n/2),floor(n/2)).

Examples

			In a two-dimensional vector format the optimal circles are given as the first two terms are the coordinates of the center, the third is the squared radius. If you don't see a particular n value then consider a larger one: for example, as a(9)=a(10), it is enough to give the circles only for n=10. Short Pari code to check these solutions: f(v,n)={a=matrix(n,n,i,j,0);L=length(v);for(i=1,L,x0=v[i][1];y0=v[i][2];r2=v[i][3];for(x=0,n-1,for(y=0,n-1,d2=(x-x0)^2+(y-y0)^2-r2;if(d2==0,a[x+1,y+1]=1)))); s=sum(i=1,n,sum(j=1,n,a[i,j]));print("Using ",L," circles, covered "s," points on the [0,",n-1"]^2 grid.")} Call for example f(v,8), where v is the vector listed for n=8.
n=2: 1 circle: v=[[1/2, 1/2, 1/2]];
n=4: 3 circles: v=[[3/2, 1/2, 5/2], [3/2, 3/2, 5/2], [3/2, 5/2, 5/2]];
n=5: 5 circles: v=[[3/2, 1/2, 5/2], [3/2, 3/2, 5/2], [1/2, 1/2, 25/2], [5/2, 5/2, 5/2], [13/6, 17/6, 85/18]];
n=6; 6 circles: v=[[3/2, 1/2, 5/2], [5/2, 2, 25/4], [5/2, 3, 25/4], [3/2, 9/2, 5/2], [7/2, 1/2, 5/2], [7/2, 9/2, 5/2]];
n=8: 8 circles: v=[[7/2, 7/2, 25/2], [5/2, 5/2, 25/2], [7/2, 7/2, 37/2], [5/2, 9/2, 25/2], [9/2, 5/2, 25/2], [9/2, 9/2, 25/2], [7/2, 7/2, 5/2], [7/2, 7/2, 1/2]];
n=10: 11 circles: v=[[9/2, 9/2, 25/2], [11/2, 11/2, 25/2], [7/2, 7/2, 25/2], [7/2, 11/2, 25/2], [11/2, 7/2, 25/2], [9/2, 9/2, 65/2], [9/2, 9/2, 53/2], [9/2, 9/2, 37/2], [9/2, 9/2, 5/2], [9/2, 1/2, 41/2], [9/2, 17/2, 41/2]];
n=11: 14 circles: v=[[13/2, 13/2, 25/2], [13/2, 9/2, 25/2], [11/2, 11/2, 25/2], [9/2, 13/2, 25/2], [9/2, 9/2, 25/2], [11/2, 11/2, 65/2], [11/2, 11/2, 5/2], [11/2, 11/2, 37/2], [9/2, 11/2, 65/2], [11/2, 9/2, 65/2], [15/2, 15/2, 125/2], [9/2, 9/2, 65/2], [11/2, -1/2, 61/2], [11/2, 21/2, 41/2]];
n=12: 15 circles: v=[[11/2, 11/2, 65/2], [13/2, 11/2, 65/2], [9/2, 11/2, 65/2], [15/2, 11/2, 25/2], [9/2, 11/2, 25/2], [15/2, 11/2, 65/2], [13/2, 11/2, 25/2], [11/2, 15/2, 13/2], [11/2, 7/2, 13/2], [7/2, 11/2, 65/2], [7/2, 11/2, 25/2], [11/2, 19/2, 65/2], [11/2, 3/2, 65/2], [103/10, 11/2, 1517/50], [7/10, 11/2, 1517/50]];
		

Crossrefs

For circular arcs, see A187679.

A188669 a(n) = ceiling(binomial(2*n-1,n-1)/n).

Original entry on oeis.org

1, 2, 4, 9, 26, 77, 246, 805, 2702, 9238, 32066, 112674, 400024, 1432736, 5170584, 18783763, 68635478, 252087092, 930138522, 3446163221, 12815663678, 47820430994, 178987624514, 671825076732, 2528212128756, 9536894864387, 36054433808299, 136583760727865, 518401146543812, 1971076359414358, 7506908923471954, 28634752202227978
Offset: 1

Author

Robert Gerbicz and N. J. A. Sloane, Apr 07 2011

Keywords

Comments

A useful lower bound when studying certain problems involving compositions.

Crossrefs

See A201058, A201059 for numerators and denominators without ceiling. - F. Chapoton, Aug 15 2021

Programs

  • Magma
    [Ceiling(Binomial(2*n-1,n-1)/n): n in [1..60]]; // Vincenzo Librandi, Sep 07 2016
  • Mathematica
    Table[Ceiling[Binomial[2 n - 1, n - 1]/n], {n, 35}]  (* Harvey P. Dale, Apr 09 2011 *)

A178916 Triangular array a(n,k) read by rows: nextprime(k*n!)-k*n!. For 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 7, 1, 7, 7, 1, 7, 7, 1, 7, 7, 7, 11, 11, 1, 1, 19, 1, 1, 23, 11, 17, 1, 11, 1, 1, 11, 17, 29, 1, 1, 13, 1, 13, 1, 29, 11, 29, 1, 13, 1, 11, 11, 1, 1, 17, 1, 13, 17, 29, 1, 47, 13, 1, 13, 19, 17, 29, 1, 17, 59, 1, 1, 29, 1, 41, 29, 1, 1
Offset: 1

Author

Dmitry Kamenetsky, Dec 29 2010 Robert Gerbicz, Dec 29 2010

Keywords

Comments

Conjecture: for every n>1 and 1<=k<=n there is a prime in the interval [k*n!+1, k*n!+3*n*log(n)^2]. [Robert Gerbicz, Dec 28 2010]

Examples

			Triangle begins:
1
1,1
1,1,1
5,5,1,1
7,1,7,7,1
7,7,1,7,7,7
11,11,1,1,19,1,1
23,11,17,1,11,1,1,11
17,29,1,1,13,1,13,1,29
11,29,1,13,1,11,11,1,1,17
1,13,17,29,1,47,13,1,13,19,17
29,1,17,59,1,1,29,1,41,29,1,1
		

Programs

  • Mathematica
    Flatten[Table[NextPrime[k*n!] - k*n!, {n, 12}, {k, n}]]

A180293 Number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to n-3.

Original entry on oeis.org

1, 50, 195, 392, 672, 1080, 1650, 2420, 3432, 4732, 6370, 8400, 10880, 13872, 17442, 21660, 26600, 32340, 38962, 46552, 55200, 65000, 76050, 88452, 102312, 117740, 134850, 153760, 174592, 197472, 222530, 249900, 279720, 312132, 347282, 385320
Offset: 4

Author

R. H. Hardin, formula from Robert Gerbicz in the Sequence Fans Mailing List, Aug 24 2010

Keywords

Crossrefs

(n-3)rd entry in rows of A180281.

Formula

Empirical: a(n) = n*binomial(n+1, n-2) for n>6.

A180292 Number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to n-2.

Original entry on oeis.org

1, 18, 50, 90, 147, 224, 324, 450, 605, 792, 1014, 1274, 1575, 1920, 2312, 2754, 3249, 3800, 4410, 5082, 5819, 6624, 7500, 8450, 9477, 10584, 11774, 13050, 14415, 15872, 17424, 19074, 20825, 22680, 24642, 26714, 28899, 31200, 33620, 36162, 38829, 41624
Offset: 3

Author

R. H. Hardin, formula from Robert Gerbicz in the Sequence Fans Mailing List, Aug 24 2010

Keywords

Crossrefs

(n-2)nd entry in rows of A180281.

Formula

Empirical: a(n)=n*binomial(n,n-2) for n>4.

A180300 Number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to n-10.

Original entry on oeis.org

1, 73788, 1645215, 6838832, 16011905, 30931296, 55439448, 95585220, 160286166, 262462010, 420630210, 660990330, 1020099795, 1548293760, 2314026000, 3409331640, 4956643692, 7117231968, 10101573944, 14182012680, 19708107276
Offset: 11

Author

R. H. Hardin, formula from Robert Gerbicz in the Sequence Fans Mailing List, Aug 24 2010

Keywords

Crossrefs

n-10th entry in rows of A180281.

Formula

Empirical: a(n)=n*binomial(n+8,n-2) for n>20.

A180294 Number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to n-4.

Original entry on oeis.org

1, 140, 735, 1652, 2970, 4950, 7865, 12012, 17745, 25480, 35700, 48960, 65892, 87210, 113715, 146300, 185955, 233772, 290950, 358800, 438750, 532350, 641277, 767340, 912485, 1078800, 1268520, 1484032, 1727880, 2002770, 2311575, 2657340, 3043287
Offset: 5

Author

R. H. Hardin, formula from Robert Gerbicz in the Sequence Fans Mailing List, Aug 24 2010

Keywords

Crossrefs

n-4th entry in rows of A180281.

Formula

Empirical: a(n) = n*binomial(n+2,n-2) for n>8.

A180296 Number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to n-6.

Original entry on oeis.org

1, 1106, 9912, 27600, 54450, 96030, 160888, 259896, 406980, 620160, 922488, 1343034, 1917993, 2691920, 3719100, 5065060, 6808230, 9041760, 11875500, 15438150, 19879587, 25373376, 32119472, 40347120, 50317960, 62329344, 76717872
Offset: 7

Author

R. H. Hardin, formula from Robert Gerbicz in the Sequence Fans Mailing List, Aug 24 2010

Keywords

Crossrefs

n-6th entry in rows of A180281.

Formula

Empirical: a(n) = n*binomial(n+4,n-2) for n>12.

A180295 Number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to n-5.

Original entry on oeis.org

1, 392, 2716, 6804, 12825, 22022, 36036, 56784, 86632, 128520, 186048, 263568, 366282, 500346, 672980, 892584, 1168860, 1512940, 1937520, 2457000, 3087630, 3847662, 4757508, 5839904, 7120080, 8625936, 10388224, 12440736, 14820498
Offset: 6

Author

R. H. Hardin, formula from Robert Gerbicz in the Sequence Fans Mailing List, Aug 24 2010

Keywords

Crossrefs

n-5th entry in rows of A180281

Formula

Empirical: a(n)=n*binomial(n+3,n-2) for n>10

A180297 Number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to n-7.

Original entry on oeis.org

1, 3138, 35850, 110715, 228294, 412698, 705341, 1162800, 1860480, 2899248, 4412826, 6575976, 9614000, 13813800, 19536660, 27232920, 37458720, 50895000, 68368950, 90878112, 119617344, 156008864, 201735600, 258778080, 329455104
Offset: 8

Author

R. H. Hardin, formula from Robert Gerbicz in the Sequence Fans Mailing List, Aug 24 2010

Keywords

Crossrefs

n-7th entry in rows of A180281

Formula

Empirical: a(n)=n*binomial(n+5,n-2) for n>14