F. Chapoton has authored 68 sequences. Here are the ten most recent ones:
A383776
a(n) = (11*n + 3 + 6/(n+2)) * Catalan(n).
Original entry on oeis.org
6, 16, 53, 186, 672, 2472, 9207, 34606, 130988, 498576, 1906346, 7316596, 28170768, 108760560, 420889995, 1632155670, 6340808820, 24673450560, 96148670310, 375164728620, 1465589068320, 5731488987120, 22436098732710, 87905595401676, 344702077523352, 1352701532137312, 5312100899224532, 20874451526714856
Offset: 0
-
A383776[n_] := (11*n + 3 + 6/(n + 2))*CatalanNumber[n];
Array[A383776, 30, 0] (* Paolo Xausa, May 15 2025 *)
-
[(11*n+3+6/(n+2))*catalan_number(n) for n in range(12)]
A382880
Symmetric triangle read by rows refining A109113.
Original entry on oeis.org
1, 1, 1, 6, 6, 1, 1, 11, 33, 33, 11, 1, 1, 16, 85, 189, 189, 85, 16, 1, 1, 21, 162, 590, 1107, 1107, 590, 162, 21, 1, 1, 26, 264, 1361, 3919, 6588, 6588, 3919, 1361, 264, 26, 1, 1, 31, 391, 2627, 10400, 25484, 39663, 39663, 25484, 10400, 2627, 391, 31, 1
Offset: 0
Triangle begins:
1, 1;
1, 6, 6, 1;
1, 11, 33, 33, 11, 1;
1, 16, 85, 189, 189, 85, 16, 1;
1, 21, 162, 590, 1107, 1107, 590, 162, 21, 1;
...
A382668
a(n) = C(n+1) - C(n-1) - 2*C(n-2) where C(n) = A000108(n) are the Catalan numbers.
Original entry on oeis.org
2, 10, 33, 108, 359, 1214, 4169, 14508, 51064, 181492, 650522, 2348856, 8535921, 31197430, 114601065, 422891340, 1566903060, 5827192140, 21743726430, 81383916840, 305465105790, 1149489049644, 4335921660522, 16391329697528, 62091796219904, 235656705875304
Offset: 2
-
gf := ((2*x^3 + x^2 - 1)*sqrt(1 - 4*x) - 4*x^3 - 3*x^2 - 2*x + 1)/(2*x^2):
ser := series(gf, x, 30): seq(coeff(ser, x, n), n = 2..27); # Peter Luschny, Apr 03 2025
-
a[n_]:=CatalanNumber[n+1]-CatalanNumber[n-1]-2CatalanNumber[n-2];Array[a,26,2] (* James C. McMahon, Apr 05 2025 *)
-
C = catalan_number
[C(n + 1) - C(n - 1) - 2 * C(n - 2) for n in range(2, 28)]
A382448
Triangle read by rows, defined by the two-variable g.f. (x^3*y^2 + x^3*y + 1)/(1 - x^2*y - x*y - x).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 8, 15, 8, 1, 1, 10, 29, 29, 10, 1, 1, 12, 47, 73, 47, 12, 1, 1, 14, 69, 149, 149, 69, 14, 1, 1, 16, 95, 265, 371, 265, 95, 16, 1, 1, 18, 125, 429, 785, 785, 429, 125, 18, 1, 1, 20, 159, 649, 1479, 1941, 1479, 649, 159, 20, 1
Offset: 0
Triangle begins:
[0] [1]
[1] [1, 1]
[2] [1, 3, 1]
[3] [1, 6, 6, 1]
[4] [1, 8, 15, 8, 1]
[5] [1, 10, 29, 29, 10, 1]
[6] [1, 12, 47, 73, 47, 12, 1]
[7] [1, 14, 69, 149, 149, 69, 14, 1]
[8] [1, 16, 95, 265, 371, 265, 95, 16, 1]
[9] [1, 18, 125, 429, 785, 785, 429, 125, 18, 1]
A382439
Triangle read by rows: defined by the two-variable g.f. (x^3*y^2 + x^3*y - x^2*y + 1) / (1 - x^2*y - x*y - x).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 7, 12, 7, 1, 1, 9, 24, 24, 9, 1, 1, 11, 40, 60, 40, 11, 1, 1, 13, 60, 124, 124, 60, 13, 1, 1, 15, 84, 224, 308, 224, 84, 15, 1, 1, 17, 112, 368, 656, 656, 368, 112, 17, 1, 1, 19, 144, 564, 1248, 1620, 1248, 564, 144, 19, 1
Offset: 0
[0] [1]
[1] [1, 1]
[2] [1, 2, 1]
[3] [1, 5, 5, 1]
[4] [1, 7, 12, 7, 1]
[5] [1, 9, 24, 24, 9, 1]
[6] [1, 11, 40, 60, 40, 11, 1]
[7] [1, 13, 60, 124, 124, 60, 13, 1]
[8] [1, 15, 84, 224, 308, 224, 84, 15, 1]
[9] [1, 17, 112, 368, 656, 656, 368, 112, 17, 1]
A382444
Triangle read by rows, defined by the two-variable g.f. (1 + y*x^2 + (y^2 + y)*x^3)/(1-(1+y)*x-y*x^2).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 9, 18, 9, 1, 1, 11, 34, 34, 11, 1, 1, 13, 54, 86, 54, 13, 1, 1, 15, 78, 174, 174, 78, 15, 1, 1, 17, 106, 306, 434, 306, 106, 17, 1, 1, 19, 138, 490, 914, 914, 490, 138, 19, 1, 1, 21, 174, 734, 1710, 2262, 1710, 734, 174, 21, 1
Offset: 0
Triangle begins:
[0] [1]
[1] [1, 1]
[2] [1, 4, 1]
[3] [1, 7, 7, 1]
[4] [1, 9, 18, 9, 1]
[5] [1, 11, 34, 34, 11, 1]
[6] [1, 13, 54, 86, 54, 13, 1]
[7] [1, 15, 78, 174, 174, 78, 15, 1]
[8] [1, 17, 106, 306, 434, 306, 106, 17, 1]
[9] [1, 19, 138, 490, 914, 914, 490, 138, 19, 1]
...
A382436
Triangle read by rows, defined by the two-variable g.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 9, 17, 9, 1, 1, 12, 36, 36, 12, 1, 1, 15, 64, 101, 64, 15, 1, 1, 18, 101, 227, 227, 101, 18, 1, 1, 21, 147, 440, 627, 440, 147, 21, 1, 1, 24, 202, 767, 1459, 1459, 767, 202, 24, 1, 1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 9, 17, 9, 1;
1, 12, 36, 36, 12, 1;
1, 15, 64, 101, 64, 15, 1;
1, 18, 101, 227, 227, 101, 18, 1;
1, 21, 147, 440, 627, 440, 147, 21, 1;
1, 24, 202, 767, 1459, 1459, 767, 202, 24, 1;
1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1;
...
A376161
Number of support Tau-tilting modules for some algebras.
Original entry on oeis.org
3, 5, 12, 33, 98, 306, 990, 3289, 11154, 38454, 134368, 474810, 1693812, 6091780, 22064130, 80410185, 294647250, 1084922190, 4012165080, 14895504030, 55496654460, 207431394300, 777601790940, 2922867908298, 11013796950228, 41596652545756, 157434454904160, 597029454416724, 2268232385053096
Offset: 0
-
a := n -> -(3*n + 2)*(-4)^(n + 1)*binomial(3/2, n + 2):
seq(a(n), n = 0..28) # Peter Luschny, Sep 13 2024
-
A376161[n_] := CatalanNumber[n]*(9*n + 6)/(n + 2);
Array[A376161, 30, 0] (* Paolo Xausa, Sep 14 2024 *)
-
def a(n):
return 3*(3*n+2)*binomial(2*n+4,n+2)/4/(2*n+1)/(2*n+3)
A371395
Triangle read by rows: T(n, k) = binomial(n + k, k) * binomial(2*n - k, n - k) / (n + 1).
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 5, 10, 10, 5, 14, 35, 45, 35, 14, 42, 126, 196, 196, 126, 42, 132, 462, 840, 1008, 840, 462, 132, 429, 1716, 3564, 4950, 4950, 3564, 1716, 429, 1430, 6435, 15015, 23595, 27225, 23595, 15015, 6435, 1430
Offset: 0
Triangle begins:
[0] [ 1],
[1] [ 1, 1],
[2] [ 2, 3, 2],
[3] [ 5, 10, 10, 5],
[4] [14, 35, 45, 35, 14],
[5] [42, 126, 196, 196, 126, 42].
Column 0 and main diagonal are
A000108.
Column 1 and subdiagonal are
A001700.
The even bisection of the alternating row sums is
A001764.
-
T := (n, k) -> binomial(n + k, k)*binomial(2*n - k, n)/(n + 1):
seq(print(seq(T(n, k), k = 0..n)), n = 0..7); # Peter Luschny, Mar 21 2024
-
T[n_, k_] := (Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, k - n, 1, 1]) /(n + 1); Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
(* Peter Luschny, Mar 21 2024 *)
-
def Trow(n):
return [binomial(n+k, k) * binomial(2*n-k, n-k) / (n+1) for k in range(n+1)]
-
# As the reverse of x*(1-x)*(1-t*x) w.r.t variable x.
t = polygen(QQ, 't')
x = LazyPowerSeriesRing(t.parent(), 'x').0
gf = x*(1-x)*(1-t*x)
coeffs = gf.revert() / x
for n in range(6):
print(coeffs[n].list())
A367872
Number of dissections of a convex (4n+4)-sided polygon into n hexagons and one square (up to equivalence).
Original entry on oeis.org
1, 4, 30, 272, 2695, 28080, 302064, 3321120, 37095201, 419276660, 4782798020, 54960207120, 635339153865, 7380876649216, 86101923008160, 1007980225327680, 11836181297108565, 139353762142502100
Offset: 0
For n=0, there is just one square, so that a(0)=1. For n=1, one can dissect an octagon in 8 ways into a hexagon and a square. In this case, the equivalence relation just relates every such dissection to its half rotated image, so that a(1)=4.
-
Table[Binomial[5*n + 2, n]*(n + 3)/(4*n + 3), {n, 0, 50}]
-
for(n=0,25, print1(binomial(5*n+2,n)*(n+3)/(4*n+3), ", "))
-
def A367872(n):
return binomial(5*n+2, n) * (n+3) / (4*n+3)
Comments