cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: F. Chapoton

F. Chapoton's wiki page.

F. Chapoton has authored 68 sequences. Here are the ten most recent ones:

A383776 a(n) = (11*n + 3 + 6/(n+2)) * Catalan(n).

Original entry on oeis.org

6, 16, 53, 186, 672, 2472, 9207, 34606, 130988, 498576, 1906346, 7316596, 28170768, 108760560, 420889995, 1632155670, 6340808820, 24673450560, 96148670310, 375164728620, 1465589068320, 5731488987120, 22436098732710, 87905595401676, 344702077523352, 1352701532137312, 5312100899224532, 20874451526714856
Offset: 0

Author

F. Chapoton, May 09 2025

Keywords

Comments

It appears that for n >= 2 a(n-2) is the number of lattice points in the n-dimensional lattice polytope defined, in the space with coordinates (x_1,x_2,...,x_n), by the equations x_i >= 0 for every i, sum_i x_i <= n and x_1 + x_2 <= 2. For n=2, this is a triangle with 6 lattice points.

Crossrefs

Programs

  • Mathematica
    A383776[n_] := (11*n + 3 + 6/(n + 2))*CatalanNumber[n];
    Array[A383776, 30, 0] (* Paolo Xausa, May 15 2025 *)
  • Sage
    [(11*n+3+6/(n+2))*catalan_number(n) for n in range(12)]

Formula

a(n) = (11*n + 3 + 6/(n + 2))*Catalan(n).
G.f.: 2*(7 + 5*sqrt(1 - 4*x) - 6*x)/((1 + sqrt(1 - 4*x))^2*sqrt(1 - 4*x)). - Stefano Spezia, May 15 2025

A382880 Symmetric triangle read by rows refining A109113.

Original entry on oeis.org

1, 1, 1, 6, 6, 1, 1, 11, 33, 33, 11, 1, 1, 16, 85, 189, 189, 85, 16, 1, 1, 21, 162, 590, 1107, 1107, 590, 162, 21, 1, 1, 26, 264, 1361, 3919, 6588, 6588, 3919, 1361, 264, 26, 1, 1, 31, 391, 2627, 10400, 25484, 39663, 39663, 25484, 10400, 2627, 391, 31, 1
Offset: 0

Author

F. Chapoton, Apr 07 2025

Keywords

Comments

Every row is symmetric. Alternating row sums vanish.

Examples

			Triangle begins:
  1,  1;
  1,  6,   6,   1;
  1, 11,  33,  33,   11,    1;
  1, 16,  85, 189,  189,   85,  16,   1;
  1, 21, 162, 590, 1107, 1107, 590, 162, 21, 1;
  ...
		

Crossrefs

Cf. A109113 (row sums).

Programs

  • Sage
    y = polygen(QQ,'y')
    t = LazyPowerSeriesRing(y.parent(),'t').gen()
    v = (1+y)*(1+y*t)/(1-(1+4*y+y**2)*t-(y+y**2+y**3)*t**2)
    [list(cf) for cf in v[:8]]

Formula

G.f.: (1+y)*(1+y*t)/(1-(1+4*y+y^2)*t-(y+y^2+y^3)*t^2).

A382668 a(n) = C(n+1) - C(n-1) - 2*C(n-2) where C(n) = A000108(n) are the Catalan numbers.

Original entry on oeis.org

2, 10, 33, 108, 359, 1214, 4169, 14508, 51064, 181492, 650522, 2348856, 8535921, 31197430, 114601065, 422891340, 1566903060, 5827192140, 21743726430, 81383916840, 305465105790, 1149489049644, 4335921660522, 16391329697528, 62091796219904, 235656705875304
Offset: 2

Author

F. Chapoton, Apr 02 2025

Keywords

Crossrefs

Programs

  • Maple
    gf := ((2*x^3 + x^2 - 1)*sqrt(1 - 4*x) - 4*x^3 - 3*x^2 - 2*x + 1)/(2*x^2):
    ser := series(gf, x, 30): seq(coeff(ser, x, n), n = 2..27);  # Peter Luschny, Apr 03 2025
  • Mathematica
    a[n_]:=CatalanNumber[n+1]-CatalanNumber[n-1]-2CatalanNumber[n-2];Array[a,26,2] (* James C. McMahon, Apr 05 2025 *)
  • SageMath
    C = catalan_number
    [C(n + 1) - C(n - 1) - 2 * C(n - 2) for n in range(2, 28)]

Formula

a(n) = [x^n] ((2*x^3 + x^2 - 1)*sqrt(1 - 4*x) - 4*x^3 - 3*x^2 - 2*x + 1)/(2*x^2). - Peter Luschny, Apr 03 2025

A382448 Triangle read by rows, defined by the two-variable g.f. (x^3*y^2 + x^3*y + 1)/(1 - x^2*y - x*y - x).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 8, 15, 8, 1, 1, 10, 29, 29, 10, 1, 1, 12, 47, 73, 47, 12, 1, 1, 14, 69, 149, 149, 69, 14, 1, 1, 16, 95, 265, 371, 265, 95, 16, 1, 1, 18, 125, 429, 785, 785, 429, 125, 18, 1, 1, 20, 159, 649, 1479, 1941, 1479, 649, 159, 20, 1
Offset: 0

Author

F. Chapoton, Mar 26 2025

Keywords

Comments

Every row is symmetric.

Examples

			Triangle begins:
  [0] [1]
  [1] [1,  1]
  [2] [1,  3,   1]
  [3] [1,  6,   6,   1]
  [4] [1,  8,  15,   8,   1]
  [5] [1, 10,  29,  29,  10,  1]
  [6] [1, 12,  47,  73,  47, 12,    1]
  [7] [1, 14,  69, 149, 149, 69,   14,   1]
  [8] [1, 16,  95, 265, 371, 265,  95,  16, 1]
  [9] [1, 18, 125, 429, 785, 785, 429, 125, 18, 1]
		

Crossrefs

Similar to A008288, A103450, A382436 and A382444. Row sums are A105082.

Programs

  • Sage
    y = polygen(QQ, 'y')
    x = y.parent()[['x']].gen()
    gf = (x^3*y^2 + x^3*y + 1)/(1 - x^2*y - x*y - x)
    [list(u) for u in list(gf.O(10))]

A382439 Triangle read by rows: defined by the two-variable g.f. (x^3*y^2 + x^3*y - x^2*y + 1) / (1 - x^2*y - x*y - x).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 7, 12, 7, 1, 1, 9, 24, 24, 9, 1, 1, 11, 40, 60, 40, 11, 1, 1, 13, 60, 124, 124, 60, 13, 1, 1, 15, 84, 224, 308, 224, 84, 15, 1, 1, 17, 112, 368, 656, 656, 368, 112, 17, 1, 1, 19, 144, 564, 1248, 1620, 1248, 564, 144, 19, 1
Offset: 0

Author

F. Chapoton, Mar 25 2025

Keywords

Comments

The alternating sum of every row n > 0 vanishes. Every row is symmetric.

Examples

			  [0] [1]
  [1] [1,  1]
  [2] [1,  2,   1]
  [3] [1,  5,   5,   1]
  [4] [1,  7,  12,   7,   1]
  [5] [1,  9,  24,  24,   9,   1]
  [6] [1, 11,  40,  60,  40,  11,   1]
  [7] [1, 13,  60, 124, 124,  60,  13,   1]
  [8] [1, 15,  84, 224, 308, 224,  84,  15,  1]
  [9] [1, 17, 112, 368, 656, 656, 368, 112, 17, 1]
		

Crossrefs

Similar to A008288 and A382436. Row sums are A245990.

Programs

  • Sage
    y = polygen(QQ, 'y')
    x = y.parent()[['x']].gen()
    gf = (x^3*y^2 + x^3*y - x^2*y + 1)/(1 - x^2*y - x*y - x)
    [list(u) for u in list(gf.O(10))]

A382444 Triangle read by rows, defined by the two-variable g.f. (1 + y*x^2 + (y^2 + y)*x^3)/(1-(1+y)*x-y*x^2).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 9, 18, 9, 1, 1, 11, 34, 34, 11, 1, 1, 13, 54, 86, 54, 13, 1, 1, 15, 78, 174, 174, 78, 15, 1, 1, 17, 106, 306, 434, 306, 106, 17, 1, 1, 19, 138, 490, 914, 914, 490, 138, 19, 1, 1, 21, 174, 734, 1710, 2262, 1710, 734, 174, 21, 1
Offset: 0

Author

F. Chapoton, Mar 25 2025

Keywords

Comments

Every row is symmetric.

Examples

			Triangle begins:
  [0] [1]
  [1] [1,  1]
  [2] [1,  4,   1]
  [3] [1,  7,   7,   1]
  [4] [1,  9,  18,   9,   1]
  [5] [1, 11,  34,  34,  11,   1]
  [6] [1, 13,  54,  86,  54,  13,   1]
  [7] [1, 15,  78, 174, 174,  78,  15,   1]
  [8] [1, 17, 106, 306, 434, 306, 106,  17,  1]
  [9] [1, 19, 138, 490, 914, 914, 490, 138, 19, 1]
  ...
		

Crossrefs

Similar to A008288, A103450 and A382436. Row sums are A265107.

Programs

  • Sage
    y = polygen(QQ, 'y')
    x = y.parent()[['x']].gen()
    gf = (1 + y*x^2 + (y^2 + y)*x^3)/(1 - (1 + y)*x - y*x^2)
    [list(u) for u in list(gf.O(11))]

A382436 Triangle read by rows, defined by the two-variable g.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 9, 17, 9, 1, 1, 12, 36, 36, 12, 1, 1, 15, 64, 101, 64, 15, 1, 1, 18, 101, 227, 227, 101, 18, 1, 1, 21, 147, 440, 627, 440, 147, 21, 1, 1, 24, 202, 767, 1459, 1459, 767, 202, 24, 1, 1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1
Offset: 0

Author

F. Chapoton, Mar 25 2025

Keywords

Comments

The original definition was "Decomposition of A077938".
Every row is symmetric.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,   1;
  1,  6,   6,    1;
  1,  9,  17,    9,    1;
  1, 12,  36,   36,   12,    1;
  1, 15,  64,  101,   64,   15,    1;
  1, 18, 101,  227,  227,  101,   18,    1;
  1, 21, 147,  440,  627,  440,  147,   21,   1;
  1, 24, 202,  767, 1459, 1459,  767,  202,  24,  1;
  1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1;
  ...
		

Crossrefs

Similar to A008288, A103450, and A382444.
Row sums are A077938.
T(2n, n) gives A339565.
Cf. A056594.

Programs

  • Sage
    y = polygen(QQ, 'y')
    x = y.parent()[['x']].gen()
    inverse = 1 + (-y - 1)*x - y*x^2 + (-y^2 - y)*x^3
    gf = 1 / inverse
    [list(u) for u in list(gf.O(11))]

Formula

G.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).
Sum_{k=0..n} (-1)^k * T(n,k) = A056594(n). - Alois P. Heinz, Mar 25 2025

A376161 Number of support Tau-tilting modules for some algebras.

Original entry on oeis.org

3, 5, 12, 33, 98, 306, 990, 3289, 11154, 38454, 134368, 474810, 1693812, 6091780, 22064130, 80410185, 294647250, 1084922190, 4012165080, 14895504030, 55496654460, 207431394300, 777601790940, 2922867908298, 11013796950228, 41596652545756, 157434454904160, 597029454416724, 2268232385053096
Offset: 0

Author

F. Chapoton, Sep 13 2024

Keywords

Comments

See Prop. A.6 in Wang's reference for the table counting Tau-tilting modules for the linear quiver modulo the relation alpha*beta = 0.

Programs

  • Maple
    a := n -> -(3*n + 2)*(-4)^(n + 1)*binomial(3/2, n + 2):
    seq(a(n), n = 0..28)  # Peter Luschny, Sep 13 2024
  • Mathematica
    A376161[n_] := CatalanNumber[n]*(9*n + 6)/(n + 2);
    Array[A376161, 30, 0] (* Paolo Xausa, Sep 14 2024 *)
  • Sage
    def a(n):
        return 3*(3*n+2)*binomial(2*n+4,n+2)/4/(2*n+1)/(2*n+3)

Formula

a(n) = 3*(3*n+2)*binomial(2*n+4,n+2)/(4*(2*n+1)*(2*n+3)).
a(n) = A329533(n)/(n + 1).
From Peter Luschny, Sep 13 2024: (Start)
a(n) = (3*n + 2) * [x^n] ((1 - 4*x)^(3/2) + 12*x - 2)/(4*x^2).
a(n) = A016789(n)*(3/2)*(2*n)! * [x^(2*n)] hypergeom([], [3], x^2).
a(n) = CatalanNumber(n)*(9*n + 6)/(n + 2).
a(n) = -(3*n + 2)*(-4)^(n + 1)*binomial(3/2, n + 2).
a(n) = 2^n*(9*n + 6)*(2*n - 1)!! / (n + 2)!.
a(n) = A007054(n) * (3*n + 2) / 2.
a(n) = 6*A023999(n + 1)/(n + 2)!. (End)

A371395 Triangle read by rows: T(n, k) = binomial(n + k, k) * binomial(2*n - k, n - k) / (n + 1).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 5, 10, 10, 5, 14, 35, 45, 35, 14, 42, 126, 196, 196, 126, 42, 132, 462, 840, 1008, 840, 462, 132, 429, 1716, 3564, 4950, 4950, 3564, 1716, 429, 1430, 6435, 15015, 23595, 27225, 23595, 15015, 6435, 1430
Offset: 0

Author

F. Chapoton, Mar 21 2024

Keywords

Comments

The terms can be seen as graded dimensions of a non-symmetric operad. The Koszul dual operad has Hilbert series x*(1 + x)*(1 + tx). So the current table has as Hilbert series the reverse of x*(1-x)*(1-t*x) w.r.t to x (see Sage below).
The triangle is symmetric under the exchange of k with n - k.

Examples

			Triangle begins:
  [0] [ 1],
  [1] [ 1,   1],
  [2] [ 2,   3,   2],
  [3] [ 5,  10,  10,   5],
  [4] [14,  35,  45,  35,  14],
  [5] [42, 126, 196, 196, 126, 42].
		

Crossrefs

Column 0 and main diagonal are A000108.
Column 1 and subdiagonal are A001700.
Row sums are A006013.
The even bisection of the alternating row sums is A001764.
The central terms are A188681.

Programs

  • Maple
    T := (n, k) -> binomial(n + k, k)*binomial(2*n - k, n)/(n + 1):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..7);  # Peter Luschny, Mar 21 2024
  • Mathematica
    T[n_, k_] := (Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, k - n, 1, 1]) /(n + 1); Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
    (* Peter Luschny, Mar 21 2024 *)
  • SageMath
    def Trow(n):
        return [binomial(n+k, k) * binomial(2*n-k, n-k) / (n+1) for k in range(n+1)]
    
  • SageMath
    # As the reverse of x*(1-x)*(1-t*x) w.r.t variable x.
    t = polygen(QQ, 't')
    x = LazyPowerSeriesRing(t.parent(), 'x').0
    gf = x*(1-x)*(1-t*x)
    coeffs = gf.revert() / x
    for n in range(6):
        print(coeffs[n].list())

Formula

From Peter Luschny, Mar 21 2024: (Start)
T(n, k) = hypergeom([-n, -k], [1], 1)*hypergeom([-n, k - n], [1], 1)/(n + 1).
2^n*Sum_{k=0..n} T(n, k)*(1/2)^k = A085614(n + 1).
2^n*Sum_{k=0..n} T(n, k)*(-1/2)^k = A250886(n + 1). (End)

A367872 Number of dissections of a convex (4n+4)-sided polygon into n hexagons and one square (up to equivalence).

Original entry on oeis.org

1, 4, 30, 272, 2695, 28080, 302064, 3321120, 37095201, 419276660, 4782798020, 54960207120, 635339153865, 7380876649216, 86101923008160, 1007980225327680, 11836181297108565, 139353762142502100
Offset: 0

Author

F. Chapoton, Feb 22 2024

Keywords

Comments

This sequence counts dissections of a convex 4n+4-sided polygon into one square and n hexagons, modulo a simple equivalence relation. The equivalence relation is not defined by a group, but by local moves. Consider the octagon formed by a hexagon adjacent to the square. The local move is half-rotation of such octagons.
It seems that a(n) is divisible by n+1.

Examples

			For n=0, there is just one square, so that a(0)=1. For n=1, one can dissect an octagon in 8 ways into a hexagon and a square. In this case, the equivalence relation just relates every such dissection to its half rotated image, so that a(1)=4.
		

Crossrefs

Cf. A174687, A185113 (similar), A118970 (related).

Programs

  • Mathematica
    Table[Binomial[5*n + 2, n]*(n + 3)/(4*n + 3), {n, 0, 50}]
  • PARI
    for(n=0,25, print1(binomial(5*n+2,n)*(n+3)/(4*n+3), ", "))
  • Sage
    def A367872(n):
        return binomial(5*n+2, n) * (n+3) / (4*n+3)
    

Formula

a(n) = binomial(5*n+2,n)*(n+3)/(4*n+3).