A371400 Triangle read by rows: T(n, k) = binomial(k + n, k)*binomial(2*n - k, n).
1, 2, 2, 6, 9, 6, 20, 40, 40, 20, 70, 175, 225, 175, 70, 252, 756, 1176, 1176, 756, 252, 924, 3234, 5880, 7056, 5880, 3234, 924, 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432, 12870, 57915, 135135, 212355, 245025, 212355, 135135, 57915, 12870
Offset: 0
Examples
Triangle starts: [0] 1; [1] 2, 2; [2] 6, 9, 6; [3] 20, 40, 40, 20; [4] 70, 175, 225, 175, 70; [5] 252, 756, 1176, 1176, 756, 252; [6] 924, 3234, 5880, 7056, 5880, 3234, 924; [7] 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432; . Because of the symmetry, only the sum representation of terms with k <= n/2 are shown. 0: [1] 1: [1+1] 2: [1+4+1], [1+4+4] 3: [1+9+9+1], [1+9+21+9] 4: [1+16+36+16+1], [1+16+66+76+16], [1+16+76+96+36] 5: [1+25+100+100+25+1], [1+25+160+340+205+25], [1+25+190+460+400+100]
Crossrefs
Programs
-
Maple
T := (n, k) -> binomial(k + n, k) * binomial(2*n - k, n): seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
-
Mathematica
T[n_, k_] := Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, -n +k, 1, 1]; Table[T[n, k], {n, 0, 7}, {k, 0, n}]
Comments