cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371399 a(n) = 2^n * Sum_{k=0..n} binomial(k + n, k) * binomial(2*n - k, n) * (-1/2)^k.

Original entry on oeis.org

1, 2, 12, 60, 340, 1932, 11256, 66264, 394020, 2359500, 14211912, 86004360, 522502344, 3184844600, 19467675120, 119288938800, 732508344516, 4506518476620, 27771180181800, 171393806476200, 1059200506065240, 6553715347503720, 40595235803924880, 251709010315822800
Offset: 0

Views

Author

Peter Luschny, Mar 21 2024

Keywords

Crossrefs

Cf. A371400.

Programs

  • Maple
    seq((2^n*add(binomial(k+n, k)*binomial(2*n-k, n)*(-1/2)^k, k=0..n)), n=0..23);
  • Mathematica
    a[n_] := 2^n Binomial[2 n, n] Hypergeometric2F1[-n, 1 + n, -2 n, -1/2];
    Table[a[n], {n, 0, 23}]
  • Python
    from math import comb
    def A371399(n): return sum(comb(k+n,k)*comb((n<<1)-k,n)*(-1 if k&1 else 1)<Chai Wah Wu, Mar 22 2024

Formula

a(n) = 2^n * Sum_{k=0..n} A371400(n, k) * (-1/2)^k.
a(n) = 2^n * binomial(2*n, n) * hypergeom([-n, 1 + n], [-2*n], -1/2).

A371395 Triangle read by rows: T(n, k) = binomial(n + k, k) * binomial(2*n - k, n - k) / (n + 1).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 5, 10, 10, 5, 14, 35, 45, 35, 14, 42, 126, 196, 196, 126, 42, 132, 462, 840, 1008, 840, 462, 132, 429, 1716, 3564, 4950, 4950, 3564, 1716, 429, 1430, 6435, 15015, 23595, 27225, 23595, 15015, 6435, 1430
Offset: 0

Views

Author

F. Chapoton, Mar 21 2024

Keywords

Comments

The terms can be seen as graded dimensions of a non-symmetric operad. The Koszul dual operad has Hilbert series x*(1 + x)*(1 + tx). So the current table has as Hilbert series the reverse of x*(1-x)*(1-t*x) w.r.t to x (see Sage below).
The triangle is symmetric under the exchange of k with n - k.

Examples

			Triangle begins:
  [0] [ 1],
  [1] [ 1,   1],
  [2] [ 2,   3,   2],
  [3] [ 5,  10,  10,   5],
  [4] [14,  35,  45,  35,  14],
  [5] [42, 126, 196, 196, 126, 42].
		

Crossrefs

Column 0 and main diagonal are A000108.
Column 1 and subdiagonal are A001700.
Row sums are A006013.
The even bisection of the alternating row sums is A001764.
The central terms are A188681.

Programs

  • Maple
    T := (n, k) -> binomial(n + k, k)*binomial(2*n - k, n)/(n + 1):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..7);  # Peter Luschny, Mar 21 2024
  • Mathematica
    T[n_, k_] := (Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, k - n, 1, 1]) /(n + 1); Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
    (* Peter Luschny, Mar 21 2024 *)
  • SageMath
    def Trow(n):
        return [binomial(n+k, k) * binomial(2*n-k, n-k) / (n+1) for k in range(n+1)]
    
  • SageMath
    # As the reverse of x*(1-x)*(1-t*x) w.r.t variable x.
    t = polygen(QQ, 't')
    x = LazyPowerSeriesRing(t.parent(), 'x').0
    gf = x*(1-x)*(1-t*x)
    coeffs = gf.revert() / x
    for n in range(6):
        print(coeffs[n].list())

Formula

From Peter Luschny, Mar 21 2024: (Start)
T(n, k) = hypergeom([-n, -k], [1], 1)*hypergeom([-n, k - n], [1], 1)/(n + 1).
2^n*Sum_{k=0..n} T(n, k)*(1/2)^k = A085614(n + 1).
2^n*Sum_{k=0..n} T(n, k)*(-1/2)^k = A250886(n + 1). (End)

A371401 Triangle read by rows: T(n, k) = [x^k] (n*x + 1)*Hypergeometric([-n, -n + 1], [1], x).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 9, 21, 9, 1, 16, 66, 76, 16, 1, 25, 160, 340, 205, 25, 1, 36, 330, 1100, 1275, 456, 36, 1, 49, 609, 2905, 5425, 3801, 889, 49, 1, 64, 1036, 6664, 18130, 20776, 9604, 1576, 64, 1, 81, 1656, 13776, 51156, 86436, 65856, 21456, 2601, 81
Offset: 0

Views

Author

Peter Luschny, Mar 22 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1,  1;
[2] 1,  4,    4;
[3] 1,  9,   21,    9;
[4] 1, 16,   66,   76,    16;
[5] 1, 25,  160,  340,   205,    25;
[6] 1, 36,  330, 1100,  1275,   456,   36;
[7] 1, 49,  609, 2905,  5425,  3801,  889,   49;
[8] 1, 64, 1036, 6664, 18130, 20776, 9604, 1576, 64;
		

Crossrefs

Cf. A371400, A097070 (row sums, shifted).

Programs

  • Maple
    P := (n, x) -> (n*x + 1)*hypergeom([-n, -n + 1], [1], x):
    T := (n, k) -> coeff(simplify(P(n, x)), x, k):
    seq(seq(T(n, k), k = 0..n), n = 0..9);

Formula

Sum_{k=0..n} a(n) = (n + 1)*binomial(2*n - 1, n).
Showing 1-3 of 3 results.