A382436 Triangle read by rows, defined by the two-variable g.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 9, 17, 9, 1, 1, 12, 36, 36, 12, 1, 1, 15, 64, 101, 64, 15, 1, 1, 18, 101, 227, 227, 101, 18, 1, 1, 21, 147, 440, 627, 440, 147, 21, 1, 1, 24, 202, 767, 1459, 1459, 767, 202, 24, 1, 1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 3, 1; 1, 6, 6, 1; 1, 9, 17, 9, 1; 1, 12, 36, 36, 12, 1; 1, 15, 64, 101, 64, 15, 1; 1, 18, 101, 227, 227, 101, 18, 1; 1, 21, 147, 440, 627, 440, 147, 21, 1; 1, 24, 202, 767, 1459, 1459, 767, 202, 24, 1; 1, 27, 266, 1235, 2994, 3999, 2994, 1235, 266, 27, 1; ...
Crossrefs
Programs
-
Sage
y = polygen(QQ, 'y') x = y.parent()[['x']].gen() inverse = 1 + (-y - 1)*x - y*x^2 + (-y^2 - y)*x^3 gf = 1 / inverse [list(u) for u in list(gf.O(11))]
Formula
G.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).
Sum_{k=0..n} (-1)^k * T(n,k) = A056594(n). - Alois P. Heinz, Mar 25 2025
Comments