cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A064413 EKG sequence (or ECG sequence): a(1) = 1; a(2) = 2; for n > 2, a(n) = smallest number not already used which shares a factor with a(n-1).

Original entry on oeis.org

1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, 18, 14, 7, 21, 24, 16, 20, 22, 11, 33, 27, 30, 25, 35, 28, 26, 13, 39, 36, 32, 34, 17, 51, 42, 38, 19, 57, 45, 40, 44, 46, 23, 69, 48, 50, 52, 54, 56, 49, 63, 60, 55, 65, 70, 58, 29, 87, 66, 62, 31, 93, 72, 64, 68, 74, 37, 111, 75, 78, 76, 80, 82
Offset: 1

Views

Author

Jonathan Ayres (Jonathan.ayres(AT)btinternet.com), Sep 30 2001

Keywords

Comments

Locally, the graph looks like an EKG (American English) or ECG (British English).
Calculating the square of A064413 and plotting the results shows the EKG behavior even more dramatically - see A104125. - Parthasarathy Nambi, Jan 27 2005
Theorem: (1) Every number appears exactly once: this is a permutation of the positive numbers. - J. C. Lagarias, E. M. Rains, N. J. A. Sloane, Oct 03 2001
The permutation has cycles (1) (2) (3, 4, 6, 9, 10, 5) (..., 20, 18, 12, 7, 14, 13, 28, 26, ...) (8) ...
Theorem: (2) The primes appear in increasing order. - J. C. Lagarias, E. M. Rains, N. J. A. Sloane, Oct 03 2001
Theorem: (3) When an odd prime p appears it is immediately preceded by 2p and followed by 3p. - Conjectured by Lagarias-Rains-Sloane, proved by Hofman-Pilipczuk.
Theorem: (4) Let a'(n) be the same sequence but with all terms p and 3p (p prime) changed to 2p (see A256417). Then lim a'(n)/n = 1, i.e., a(n) ~ n except for the values p and 3p for p prime. - Conjectured by Lagarias-Rains-Sloane, proved by Hofman-Pilipczuk.
Conjecture: If a(n) != p, then almost everywhere a(n) > n. - Thomas Ordowski, Jan 23 2009
Conjecture: lim #(a_n > n) / n = 1, i.e., #(a_n > n) ~ n. - Thomas Ordowski, Jan 23 2009
Conjecture: A term p^2, p a prime, is immediately preceded by p*(p+1) and followed by p*(p+2). - Vladimir Baltic, Oct 03 2001. This is false, for example the sequence contains the 3 terms p*(p+2), p^2, p*(p+3) for p = 157. - Eric Rains
Theorem: If a(k) = 3p, then |{a(m) : a(m>k) < 3p}| = 3p - k. Proof: If a(k) = 3p, then all a(mk) > p and |{a(m) : a(m>k) < 3p}| = 3p - k. - Thomas Ordowski, Jan 22 2009
Let ...,a_i,...,2p,p,3p,...,a_j,... There does not exist a_i > 3p. There does not exist a_j < p. - Thomas Ordowski, Jan 20 2009
Let...,a,...,2p,p,3p,...,b,... All a<3p and b>p. #(a>2p) <= #(b<2p). - Thomas Ordowski, Jan 21 2009
If a(k)=3p then |{a(m):a(m>k)<3p}|=3p-k. - Thomas Ordowski, Jan 22 2009
GCD(a(n),n) = A247379(n). - Reinhard Zumkeller, Sep 16 2014
If the definition is changed to require that the GCD of successive terms be a prime power > 1, the sequence stays the same until a(578)=620, at which point a(579)=610 has GCD = 10 with the previous term. - N. J. A. Sloane, Mar 30 2015
From Michael De Vlieger, Dec 06 2021: (Start)
For prime p > 2, we have the chain {j : 2|j} -> 2p -> p -> 3p -> {k : 3|k}. The term j introducing 2p must be even, since 2p is an even squarefree semiprime proved by Hofman-Pilipczuk to introduce p itself. Hence no term a(i) such that p | a(i) exists in the sequence for i < n-1, where a(n) = p, leaving 2|j. Similarly, the term k following 3p must be divisible by 3 since the terms mp that are not coprime to p (thus implying p | mp) have m >= 4, thereby large compared to numbers k such that 3|k that belong to the cototient of 3p. For the chain {4, 6, 3, 9, 12}, the term 12 following 3p indeed is 4p, but p = 3; this is the only case of 4p following 3p in the sequence. As a consequence, for i > 1, A073734(A064955(i)-1) = 2 and A073734(A064955(i)+2) = 3.
For Fermat primes p, we have the chain {j : 2|j} -> 2^e-> {2p = 2^e + 2} -> {p = 2^(e-1) + 1} -> 3p -> {k : 3|k}.
a(3) = 4 = 2^2, a(5) = 3 = 2^1 + 1;
a(8) = 8 = 2^3, a(10) = 5 = 2^2 + 1;
a(31) = 32 = 2^5, a(33) = 17 = 2^4 + 1;
a(485) = 512 = 2^9, a(487) = 257 = 2^8 + 1;
a(127354) = 131072 = 2^17, a(127356) = 65537 = 2^16 + 1.
(End)

Examples

			a(2) = 2, a(3) = 4 (gcd(2,4) = 2), a(4) = 6 (gcd(4,6) = 2), a(5) = 3 (gcd(6,3) = 3), a(6) = 9 (6 already used so next number which shares a factor is 9 since gcd(3,9) = 3).
		

References

  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.

Crossrefs

A073734 gives GCD's of successive terms.
See A064664 for the inverse permutation. See A064665-A064668 for the first two infinite cycles of this permutation. A064669 gives cycle representatives.
See A064421 for sequence giving term at which n appears.
See A064424, A074177 for records.
Cf. A064955 & A352194 (prime positions), A195376 (parity), A064957 (positions of odd terms), A064953 (positions of even terms), A064426 (first differences).
See A169857 and A119415 for the effect of changing the start.
Cf. A240024 (nonprime version).
Cf. A152458 (fixed points), A247379, A247383.
For other initial terms, see A169841, A169837, A169843, A169855, A169849.
A256417 is a smoothed version.
See also A255582, A256466, A257218, A257311-A257315, A257405, A253279 (two-dimensional analog).
See also A276127.

Programs

  • Haskell
    import Data.List (delete, genericIndex)
    a064413 n = genericIndex a064413_list (n - 1)
    a064413_list = 1 : f 2 [2..] where
       ekg x zs = f zs where
           f (y:ys) = if gcd x y > 1 then y : ekg y (delete y zs) else f ys
    -- Reinhard Zumkeller, May 01 2014, Sep 17 2011
    
  • Maple
    h := array(1..20000); a := array(1..10000); maxa := 300; maxn := 2*maxa; for n from 1 to maxn do h[n] := -1; od: a[1] := 2; h[2] := 1; c := 2; for n from 2 to maxa do for m from 2 to maxn do t1 := gcd(m,c); if t1 > 1 and h[m] = -1 then c := m; a[n] := c; h[c] := n; break; fi; od: od: ap := []: for n from 1 to maxa do ap := [op(ap),a[n]]; od: hp := []: for n from 2 to maxa do hp := [op(hp),h[n]]; od: convert(ap,list); convert(hp,list); # this is very crude!
    N:= 1000: # to get terms before the first term > N
    V:= Vector(N):
    A[1]:= 1:
    A[2]:= 2: V[2]:= 1:
    for n from 3 do
      S:= {seq(seq(k*p,k=1..N/p),p=numtheory:-factorset(A[n-1]))};
      for s in sort(convert(S,list)) do
        if V[s] = 0 then
          A[n]:= s;
          break
        fi
      od;
      if V[s] = 1 then break fi;
      V[s]:= 1;
    od:
    seq(A[i],i=1..n-1); # Robert Israel, Jan 18 2016
  • Mathematica
    maxN = 100; ekg = {1, 2}; unused = Range[3, maxN]; found = True; While[found, found = False; i = 0; While[ !found && i < Length[unused], i++; If[GCD[ekg[[-1]], unused[[i]]] > 1, found = True; AppendTo[ekg, unused[[i]]]; unused = Delete[unused, i]]]]; ekg (* Ayres *)
    ekGrapher[s_List] := Block[{m = s[[-1]], k = 3}, While[MemberQ[s, k] || GCD[m, k] == 1, k++ ]; Append[s, k]]; Nest[ekGrapher, {1, 2}, 71] (* Robert G. Wilson v, May 20 2009 *)
  • PARI
    a1=1; a2=2; v=[1,2];
    for(n=3,100,a3=if(n<0,0,t=1;while(vecmin(vector(length(v),i,abs(v[i]-t)))*(gcd(a2,t)-1)==0,t++);t);a2=a3;v=concat(v,a3););
    a(n)=v[n];
    /* Benoit Cloitre, Sep 23 2012 */
    
  • Python
    from math import gcd
    A064413_list, l, s, b = [1,2], 2, 3, {}
    for _ in range(10**5):
        i = s
        while True:
            if not i in b and gcd(i, l) > 1:
                A064413_list.append(i)
                l, b[i] = i, True
                while s in b:
                    b.pop(s)
                    s += 1
                break
            i += 1 # Chai Wah Wu, Dec 08 2014

Formula

a(n) = smallest number not already used such that gcd(a(n), a(n-1)) > 1.
In Lagarias-Rains-Sloane (2002), it is conjectured that almost all a(n) satisfy the asymptotic formula a(n) = n (1+ 1/(3 log n)) + o(n/log n) as n -> oo and that the exceptional terms when the sequence is a prime or 3 times a prime p produce the spikes in the sequence. See the paper for a more precise statement of the conjecture. - N. J. A. Sloane, Mar 07 2015

Extensions

More terms from Naohiro Nomoto, Sep 30 2001
Entry extensively revised by N. J. A. Sloane, Oct 10 2001

A007908 Triangle of the gods: to get a(n), concatenate the decimal numbers 1,2,3,...,n.

Original entry on oeis.org

1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910, 1234567891011, 123456789101112, 12345678910111213, 1234567891011121314, 123456789101112131415, 12345678910111213141516, 1234567891011121314151617, 123456789101112131415161718
Offset: 1

Views

Author

R. Muller

Keywords

Comments

For the name "triangle of the gods" see Pickover link. - N. J. A. Sloane, Dec 15 2019
Number of digits: A058183(n) = A055642(a(n)); sums of digits: A037123(n) = A007953(a(n)). - Reinhard Zumkeller, Aug 10 2010
Charles Nicol and John Selfridge ask if there are infinitely many primes in this sequence - see the Guy reference. - Charles R Greathouse IV, Dec 14 2011
Stephan finds no primes in the first 839 terms. I checked that there are no primes in the first 5000 terms. Heuristically there are infinitely many, about 0.5 log log n through the n-th term. - Charles R Greathouse IV, Sep 19 2012 [Expanded search to 20000 without finding any primes. - Charles R Greathouse IV, Apr 17 2014] [Independent search extended to 64000 terms without finding any primes. - Dana Jacobsen, Apr 25 2014]
Elementary congruence arguments show that primes can occur only at indices congruent to 1, 7, 13, or 19 mod 30. - Roderick MacPhee, Oct 05 2015
A note on heuristics: I wrote a quick program to count primes in sequences which are like A007908 but start at k instead of 1. I ran this for k = 1 to 100 and counted the primes up to 1000 (1000 possibilities for k = 1, 999 for k = 2, etc. up to 901 for k = 100). I then compared this to the expected count which is 0 if the number N is divisible by 2, 3, or 5 and 15/(4 log N) otherwise. (If N < 43 I counted the number as 1 instead.) k = 1 has 1.788 expected primes but only 0 actual (of course). k = 2 has 2.268 expected but 4 actual (see A262571, A089987). In total the expectation is 111.07 and the actual count is 110, well within the expected error of +/- 10.5. - Charles R Greathouse IV, Sep 28 2015
Early bird numbers for n > 1: a(2) = A116700(1) = 12; a(3) = A116700(52) = 123; a(4) = A116700(725) = 1234; a(5) = A116700(8074) = 12345; a(6) = A116700(85846) = 123456. - Reinhard Zumkeller, Dec 13 2012
For n < 10^6, a(n)/A000217(n) is an integer for n = 1, 2, and 5. The integers are 1, 4, and 823 (a prime), respectively. - Derek Orr, Sep 04 2014; Max Alekseyev, Sep 30 2015
In order to be a prime, a(n) must end in a digit 1, 3, 7 or 9, so only 4 among 10 consecutive values can be prime. (But a(64000) already has A058183(64000) > 300000 digits.) Also, a(64001) and a(64011) and more generally a(64001+10k) is divisible by 3 unless k == 2 (mod 3), but for k = 2, 5, 8, ... 23 these are divisible by small primes < 999. a(64261) is the first serious candidate in this subsequence. - M. F. Hasler, Sep 30 2015
There are no primes in the first 10^5 terms. - Max Alekseyev, Oct 03 2015; Oct 11 2015
There are no primes in the first 200000 terms. - Serge Batalov, Oct 24 2015
There is a distributed project for continued search, using PRPNet/PFGW software; see the Mersenne Forum link below. - Serge Batalov, Oct 18 2015
It appears that the Mersenne Forum search reached n = 344869 without finding a prime, and was then abandoned. It would be nice if someone could recover the final version of that link from the Wayback machine - the Great Smarandache PRPrime search, http://99.121.249.54:1200 - so that we have a record of how far they searched. - N. J. A. Sloane, Apr 09 2018
The web page https://www.mersenneforum.org/showthread.php?t=20527&page=9 has a comment from Serge Balatov that seems to say that the search reached 10^6 without finding a prime. It would be nice to have this confirmed, and to get more details about how it was done. - N. J. A. Sloane, Dec 15 2019
The expected number of primes among the first million terms is about 0.6. - Ernst W. Mayer, Oct 09 2015
A few semiprimes exist among the early terms, but then become scarce: see A046461. For the base-2 analog of this sequence (A047778), there is a 15-decimal digit prime, but Hans Havermann has shown that the second prime would have more than 91000 digits. - N. J. A. Sloane, Oct 08 2015

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A3, page 15, of 3rd edition, Springer, 2010.

Crossrefs

See A057137 for another version.
Cf. A033307, A053064, A000422 (left concatenations)
If we concatenate 1 through n but leave out k, we get sequences A262571 (leave out 1) through A262582 (leave out 12), etc., and again we can ask for the smallest prime in each sequence. See A262300 for a summary of these results. Primes seem to exist if we search far enough. - N. J. A. Sloane, Sep 29 2015
Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: this sequence, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447. - Dylan Hamilton, Aug 11 2010
Entries that give the primes in sequences of this type: A089987, A262298, A262300, A262552, A262555.
For semiprimes see A046461.
See also A007376 (the almost-natural numbers), A071620 (primes in that sequence).
See also A033307 (the Champernowne constant) and A176942 (the Champernowne primes). A262043 is a variant of the present sequence.
A002782 is an amusing cousin of this sequence.
Least prime factor: A075019.

Programs

  • Haskell
    a007908 = read . concatMap show . enumFromTo 1 :: Integer -> Integer
    -- Reinhard Zumkeller, Dec 13 2012
    
  • Magma
    [Seqint(Reverse(&cat[Reverse(Intseq(k)): k in [1..n]])): n in [1..17]];  // Bruno Berselli, May 27 2011
    
  • Maple
    A055642 := proc(n) max(1, ilog10(n)+1) ; end: A007908 := proc(n) if n = 1 then 1; else A007908(n-1)*10^A055642(n)+n ; fi ; end: seq(A007908(n),n=1..12) ; # R. J. Mathar, May 31 2008
    # second Maple program:
    a:= proc(n) a(n):= `if`(n=0, 0, parse(cat(a(n-1), n))) end:
    seq(a(n), n=1..22);  # Alois P. Heinz, Jan 12 2021
  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits[Range[n]]]], {n, 20}] (* Alonso del Arte, Sep 19 2012 *)
    FoldList[#2 + #1 10^IntegerLength[#2] &, Range[20]] (* Eric W. Weisstein, Nov 06 2015 *)
    FromDigits /@ Flatten /@ IntegerDigits /@ Flatten /@ Rest[FoldList[List, {}, Range[20]]] (* Eric W. Weisstein, Nov 04 2015 *)
    FromDigits /@ Flatten /@ IntegerDigits /@ Rest[FoldList[Append, {}, Range[20]]] (* Eric W. Weisstein, Nov 04 2015 *)
  • Maxima
    a[1]:1$ a[n]:=a[n-1]*10^floor(log(10*n)/log(10))+n$ makelist(a[n],n,1,17);  /* Bruno Berselli, May 27 2011 */
    
  • PARI
    a(n)=my(s="");for(k=1,n,s=Str(s,k));eval(s) \\ Charles R Greathouse IV, Sep 19 2012
    
  • PARI
    A007908(n,a=0)={for(d=1,#Str(n),my(t=10^d);for(k=t\10,min(t-1,n),a=a*t+k));a} \\ M. F. Hasler, Sep 30 2015
    
  • Python
    def a(n): return int("".join(map(str, range(1, n+1))))
    print([a(n) for n in range(1, 18)]) # Michael S. Branicky, Jan 12 2021
    
  • Python
    from functools import reduce
    def A007908(n): return reduce(lambda i,j:i*10**len(str(j))+j,range(1,n+1)) # Chai Wah Wu, Feb 27 2023

Formula

a(n) = n + a(n-1)*10^A055642(n). - R. J. Mathar, May 31 2008
a(n) = floor(C*10^(A058183(n))) with C = A033307. - José de Jesús Camacho Medina, Aug 19 2015

Extensions

Name edited by N. J. A. Sloane, Dec 15 2019

A090822 Gijswijt's sequence: a(1) = 1; for n>1, a(n) = largest integer k such that the word a(1)a(2)...a(n-1) is of the form xy^k for words x and y (where y has positive length), i.e., the maximal number of repeating blocks at the end of the sequence so far.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 2, 1
Offset: 1

Views

Author

Dion Gijswijt, Feb 27 2004

Keywords

Comments

Here xy^k means the concatenation of the words x and k copies of y.
The name "Gijswijt's sequence" is due to N. J. A. Sloane, not the author!
Fix n and suppose a(n) = k. Let len_y(n) = length of shortest y for this k and let len_x = n-1 - k*len_y(n) = corresponding length of x. A091407 and A091408 give len_y and len_x. For the subsequence when len_x = 0 see A091410 and A091411.
The first 4 occurs at a(220) (see A091409).
The first 5 appears around term 10^(10^23).
We believe that for all N >= 6, the first time N appears is at about position 2^(2^(3^(4^(5^...^(N-1))))). - N. J. A. Sloane and Allan Wilks, Mar 14 2004
For a similar formula, see p. 6 of Levi van de Pol article. - Levi van de Pol, Feb 06 2023
In the first 100000 terms the fraction of [1's, 2's, 3's, 4's] seems to converge, to about [.287, .530, .179, .005] respectively. - Allan Wilks, Mar 04 2004
When k=12 is reached, say, it is treated as the number 12, not as 1,2. This is not a base-dependent sequence.
Does this sequence have a finite average? Does anyone know the exact value? - Franklin T. Adams-Watters, Jan 23 2008
Answer: Given that "...the fraction of [1's, 2's, 3's, 4's] seems to converge, to about [.287, .530, .179, .005]..." that average should be the dot product of these vectors, i.e., about 1.904. - M. F. Hasler, Jan 24 2008
Second answer: The asymptotic densities of the numbers exist, and the average is the dot product. See pp. 56-59 of Levi van de Pol article. - Levi van de Pol, Feb 06 2023
Which is the first step with two consecutive 4's? Or the shortest run found so far between two 4's? - Sergio Pimentel, Oct 10 2016
Answer: The first x such that the x-th and (x+1)-th element are 4, is 255895648634818208370064452304769558261700170817472823... ...398081655524438021806620809813295008281436789493636144. See p. 55 of Levi van de Pol article. - Levi van de Pol, Feb 06 2023

References

  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.

Crossrefs

A091412 gives lengths of runs. A091413 gives partial sums.
Generalizations: A094781, A091975, A091976, A092331-A092335.

Programs

  • Haskell
    -- See link.
    
  • Maple
    K:= proc(L)
    local n,m,k,i,b;
    m:= 0;
    n:= nops(L);
    for k from 1 do
      if k*(m+1) > n then return(m) fi;
      b:= L[-k..-1];
      for i from 1 while i*k <= n and L[-i*k .. -(i-1)*k-1] = b do od:
      m:= max(m, i-1);
    od:
    end proc:
    A[1]:= 1:
    for i from 2 to 220 do
      A[i]:= K([seq(A[j],j=1..i-1)])
    od:
    seq(A[i],i=1..220); # Robert Israel, Jul 02 2015
  • Mathematica
    ClearAll[a]; reversed = {a[2]=1, a[1]=1}; blocs[len_] := Module[{bloc1, par, pos}, bloc1 = Take[reversed, len]; par = Partition[ reversed, len]; pos = Position[par, bloc_ /; bloc != bloc1, 1, 1]; If[pos == {}, Length[par], pos[[1, 1]] - 1]]; a[n_] := a[n] = Module[{an}, an = Table[{blocs[len], len}, {len, 1, Quotient[n-1, 2]}] // Sort // Last // First; PrependTo[ reversed, an]; an]; A090822 = Table[a[n], {n, 1, 99}] (* Jean-François Alcover, Aug 13 2012 *)
  • PARI
    A090822(n,A=[])={while(#Ak||break; k=m);A=concat(A,k));A} \\ M. F. Hasler, Aug 08 2018
    
  • Python
    def k(s):
        maxk = 1
        for m in range(1, len(s)+1):
            i, y, kk = 1, s[-m:], len(s)//m
            if kk <= maxk: return maxk
            while s[-(i+1)*m:-i*m] == y: i += 1
            maxk = max(maxk, i)
    def aupton(terms):
        alst = [1]
        for n in range(2, terms+1):
            alst.append(k(alst))
        return alst
    print(aupton(99)) # Michael S. Branicky, Mar 28 2022

A037274 Home primes: for n >= 2, a(n) = the prime that is finally reached when you start with n, concatenate its prime factors (A037276) and repeat until a prime is reached (a(n) = -1 if no prime is ever reached).

Original entry on oeis.org

1, 2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277
Offset: 1

Views

Author

Keywords

Comments

The initial 1 could have been omitted.
Probabilistic arguments give exactly zero for the chance that the sequence of integers starting at n contains no prime, the expected number of primes being given by a divergent sequence. - J. H. Conway
After over 100 iterations, a(49) is still composite - see A056938 for the latest information.
More terms:
a(50) to a(60) are 3517, 317, 2213, 53, 2333, 773, 37463, 1129, 229, 59, 35149;
a(61) to a(65) are 61, 31237, 337, 1272505013723, 1381321118321175157763339900357651;
a(66) to a(76) are 2311, 67, 3739, 33191, 257, 71, 1119179, 73, 379, 571, 333271.
This is different from A195264. Here 8 = 2^3 -> 222 -> ... -> 3331113965338635107 (a prime), whereas in A195264 8 = 2^3 -> 23 (a prime). - N. J. A. Sloane, Oct 12 2014

Examples

			9 = 3*3 -> 33 = 3*11 -> 311, prime, so a(9) = 311.
The trajectory of 8 is more interesting:
8 ->
2 * 2 * 2 ->
2 * 3 * 37 ->
3 * 19 * 41 ->
3 * 3 * 3 * 7 * 13 * 13 ->
3 * 11123771 ->
7 * 149 * 317 * 941 ->
229 * 31219729 ->
11 * 2084656339 ->
3 * 347 * 911 * 118189 ->
11 * 613 * 496501723 ->
97 * 130517 * 917327 ->
53 * 1832651281459 ->
3 * 3 * 3 * 11 * 139 * 653 * 3863 * 5107
and 3331113965338635107 is prime, so a(8) = 3331113965338635107.
		

References

  • Jeffrey Heleen, Family Numbers: Mathemagical Black Holes, Recreational and Educational Computing, 5:5, pp. 6, 1990.
  • Jeffrey Heleen, Family numbers: Constructing Primes by Prime Factor Splicing, J. Recreational Math., Vol. 28 #2, 1996-97, pp. 116-119.

Crossrefs

Cf. A195264 (use exponents instead of repeating primes).
Cf. A084318 (use only one copy of each prime), A248713 (Fermi-Dirac analog: use unique representation of n>1 as a product of distinct terms of A050376).
Cf. also A120716 and related sequences.

Programs

  • Maple
    b:= n-> parse(cat(sort(map(i-> i[1]$i[2], ifactors(n)[2]))[])):
    a:= n-> `if`(isprime(n) or n=1, n, a(b(n))):
    seq(a(n), n=1..48);  # Alois P. Heinz, Jan 09 2021
  • Mathematica
    f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], { #[[2]] }] & /@ FactorInteger@n, 2]; g[n_] := NestWhile[ f@# &, n, !PrimeQ@# &]; g[1] = 1; Array[g, 41] (* Robert G. Wilson v, Sep 22 2007 *)
  • PARI
    step(n)=my(f=factor(n),s="");for(i=1,#f~,for(j=1,f[i,2],s=Str(s,f[i,1]))); eval(s)
    a(n)=if(n<4,return(n)); while(!isprime(n), n=step(n)); n \\ Charles R Greathouse IV, May 14 2015
    
  • Python
    from sympy import factorint, isprime
    def f(n): return int("".join(str(p)*e for p, e in factorint(n).items()))
    def a(n):
        if n == 1: return 1
        fn = n
        while not isprime(fn): fn = f(fn)
        return fn
    print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Jul 11 2022
  • SageMath
    def digitLen(x,n):
        r=0
        while(x>0):
            x//=n
            r+=1
        return r
    def concatPf(x,n):
        r=0
        f=list(factor(x))
        for c in range(len(f)):
            for d in range(f[c][1]):
                r*=(n**digitLen(f[c][0],n))
                r+=f[c][0]
        return r
    def hp(x,n):
        x1=concatPf(x,n)
        while(x1!=x):
            x=x1
            x1=concatPf(x1,n)
        return x
    #example: prints the home prime of 8 in base 10
    print(hp(8,10))
    

Extensions

Corrected and extended by Karl W. Heuer, Sep 30 2003

A280864 Lexicographically earliest infinite sequence of distinct positive terms such that, for any prime p, any run of consecutive multiples of p has length exactly 2.

Original entry on oeis.org

1, 2, 4, 3, 6, 8, 5, 10, 12, 9, 7, 14, 16, 11, 22, 18, 15, 20, 24, 21, 28, 26, 13, 17, 34, 30, 45, 19, 38, 32, 23, 46, 36, 27, 25, 35, 42, 48, 29, 58, 40, 55, 33, 39, 52, 44, 77, 49, 31, 62, 50, 65, 78, 54, 37, 74, 56, 63, 51, 68, 60, 75, 41, 82, 64, 43, 86
Offset: 1

Views

Author

Rémy Sigrist, Jan 09 2017

Keywords

Comments

In other words, each multiple of a prime p has exactly one neighbor that is also a multiple of p.
This sequence is similar to A280866; the first difference occurs at n=42: a(42)=55 whereas A280866(42)=50.
Conjectured to be a permutation of the positive integers.
Sometimes referred to as the "cup of coffee" sequence, since it feels as if just one more cup of coffee is all it would take to prove that this is indeed a permutation of the positive integers. - N. J. A. Sloane, Nov 04 2020
There are several short cycles, and apparently at least two infinite cycles. For a list see the attached file "Properties of A280864". - N. J. A. Sloane, Feb 03 2017
Properties (For proofs, see the attached file "Properties of A280864")
Theorem 1: This sequence contains every prime and every even number. (Added by N. J. A. Sloane, Jan 15 2017)
Theorem 2: The sequence contains infinitely many odd composite numbers. (Added by N. J. A. Sloane, Feb 14 2017)
Theorem 3: If p is an odd prime, the sequence contains infinitely many odd multiples of p. (Added by N. J. A. Sloane, Mar 12 2017, with corrected proof Apr 03 2017)
There are two types of primes in this sequence: Type I, the first time a term a(n) is divisible by p is when a(n)=p for some n; Type II, the first time a term a(n) is divisible by p is when a(n)=k*p for some n and some k>1 (the Type II primes are listed in A280745).
Conjecture 4: If a prime p divides a(n) then p <= n. - N. J. A. Sloane, Apr 07 2017 and Apr 16 2017
Theorem 5: The sequence is a permutation of the natural numbers iff it contains every square. - N. J. A. Sloane, Apr 14 2017
From Bob Selcoe, Apr 03 2017: (Start)
Define the "radical class" C_R to be the set of numbers which have the same radical R (or the same largest squarefree divisor - i.e., the same product of their prime factors). These are the columns in A284311. So for example C_10 is the set of numbers with radical 10 or prime factors {2,5}: {10, 20, 40, 50, 80, 100, 160, ...}.
If the sequence contains any members of C_R, then those members must appear in order; so for example, if 160 has appeared, {10, 20, 40, 50, 80} will have already appeared, in that order. Naturally, this holds for prime powers; for example, C_5: if 3125 has appeared, {5, 25, 125, 625} will have appeared earlier, in that order.
After seeing a(n), let S be smallest missing number (A280740) and let prime(G) be largest prime already appearing in the sequence. Conjecture: Prime(G) < S <= prime(G+1), and a(35) = 25 = S is the only nonprime S term (following a(31) = 23, preceding a(39) = 29). (End)

Examples

			The first terms, alongside their required and forbidden prime factors are:
n   a(n)  Required  Forbidden
--  ----  --------  ---------
1      1  none      none
2      2  none      none
3      4  2         none
4      3  none      2
5      6  3         none
6      8  2         3
7      5  none      2
8     10  5         none
9     12  2         5
10     9  3         2
11     7  none      3
12    14  7         none
13    16  2         7
14    11  none      2
15    22  11        none
16    18  2         11
17    15  3         2
18    20  5         3
19    24  2         5
20    21  3         2
21    28  7         3
22    26  2         7
23    13  13        2
24    17  none      13
25    34  17        none
26    30  2         17
27    45  3, 5      2
28    19  none      3, 5
29    38  19        none
30    32  2         19
31    23  none      2
32    46  23        none
33    36  2         23
34    27  3         2
35    25  none      3
36    35  5         none
37    42  7         5
38    48  2, 3      7
39    29  none      2, 3
40    58  29        none
41    40  2         29
42    55  5         2
		

Crossrefs

A280754 gives fixed points.
Cf. A280866.
In the same spirit as A064413 and A098550.
A338338, A338444, and A375029 are variants.
A373797 is a finite version.

Programs

  • Maple
    N:= 1000: # to get all terms until the first term > N
    A[1]:= 1:
    A[2]:= 2:
    G:= {}:
    Avail:= [$3..N]:
    found:= true:
    lastn:= 2:
    for n from 3 while found and nops(Avail)>0 do
      found:= false;
      H:= G;
      G:= numtheory:-factorset(A[n-1]);
      r:= convert(G minus H,`*`);
      s:= convert(G intersect H, `*`);
      for j from 1 to nops(Avail) do
        if Avail[j] mod r = 0 and igcd(Avail[j],s) = 1 then
          found:= true;
          A[n]:= Avail[j];
          Avail:= subsop(j=NULL,Avail);
          lastn:= n;
          break
        fi
      od;
    od:
    seq(A[i],i=1..lastn); # Robert Israel, Mar 22 2017
  • Mathematica
    terms = 100;
    rad[n_] := Times @@ FactorInteger[n][[All, 1]];
    A280864 = Reap[present = 0; p = 1; pp = 1; Do[forbidden = GCD[p, pp]; mandatory = p/forbidden; a = mandatory; While[BitGet[present, a] > 0 || GCD[forbidden, a] > 1, a += mandatory]; Sow[a]; present += 2^a; pp = p; p = rad[a], terms]][[2, 1]] (* Jean-François Alcover, Nov 23 2017, translated from Rémy Sigrist's PARI program *)

Extensions

Added "infinite" to definition. - N. J. A. Sloane, Sep 28 2019

A250001 Number of arrangements of n circles in the affine plane.

Original entry on oeis.org

1, 1, 3, 14, 173, 16951
Offset: 0

Views

Author

Jon Wild, May 16 2014

Keywords

Comments

Two circles are either disjoint or meet in two points. Tangential contacts are not allowed. A point belongs to exactly one or two circles. Three circles may not meet at a point. The circles may have different radii.
This is in the affine plane, rather than the projective plane.
Two arrangements are considered the same if one can be continuously changed to the other while keeping all circles circular (although the radii may be continuously changed), without changing the multiplicity of intersection points, and without a circle passing through an intersection point. Turning the whole configuration over is allowed.
Several variations are possible:
- straight lines instead of circles (see A241600).
- straight lines in general position (see A090338).
- curved lines in general position (see A090339).
- allow circles to meet tangentially but without multiple intersection points (begins 1, 5, ...); more terms are needed.
- again use circles, but allow multiple intersection points (also begins 1, 5, ...); more terms are needed.
- use ellipses rather than circles.
- a question from Walter D. Wallis: what if the circles must all have the same radius?
a(1)-a(5) computed by Jon Wild.
a(n) >= A000081(n+1) - Benoit Jubin, Dec 21 2014. More precisely, there are A000081(n+1) ways to arrange n circles if no two of them meet. - N. J. A. Sloane, May 16 2017
From Daniel Forgues, Aug 08-09 2015: (Start)
A representation for the diagrams in a250001.jpg (in the same order):
a(1) = 1: {{2}};
a(2) = 3: {{2, 3}, {2, 4}, {4, 6}};
a(3) = 14: {{2, 4, 8}, {2, 3, 6}, {2, 3, 4}, {2, 3, 5}, {4, 6, 5},
{4, 6, 15}, {2, 6, 9}, {4, 6, 12}, {2, 8, 12}, {30, 42, 70},
{?, ?, ?}, {?, ?, ?}, {15, 21, 35}, {?, ?, ?}}.
In lexicographic order:
a(3) = 14: {{2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 8}, {2, 6, 9},
{2, 8, 12}, {4, 6, 5}, {4, 6, 12}, {4, 6, 15}, {15, 21, 35},
{30, 42, 70}, {?, ?, ?}, {?, ?, ?}, {?, ?, ?}}.
The smallest integers greater than 1 are used for the representation:
(p_1)^(a_1)*...*(p_m)^(a_m), where
0 <= a_i <= n, for 1 <= i <= m;
(a_1)+...+(a_m) > 0.
Could the Venn diagram interpretation (of the k-wise, 1 <= k <= n, common divisors of k numbers from each subset) reveal a pattern?
Does this representation work for more complex diagrams? (End)
Once you get to n=5, geometric concerns mean that not all topologically-conceivable arrangements are actually circle-drawable. My program enumerated 16977 conceivable arrangements of 5 pseudo-circles, and Christopher Jones and I together have figured out how to show that 26 of these arrangements are not actually circle-drawable. So it seems that a(5) = 16951. This entry will be updated soon, and there will be a new sequence for the number of topologically-conceivable arrangements. - Jon Wild, Aug 25 2016 [The counts in this comment were amended by Jon Wild on Aug 30 2016. I apologize for taking so long to make the corrections here. - N. J. A. Sloane, Jun 11 2017]
a(n) <= 7*13^(binomial(n,3) + binomial(n,2) + 3n - 1) is a (loose) upper bound, see Reddit link. I believe XkF21WNJ's reply shaves off a factor of 13^3 from this bound for all n > 1. - Linus Hamilton, Apr 14 2019
A good upper bound for a(6) is given in sequence A288559, which counts the arrangements of pseudo-circles, i.e. the topologically conceivable arrangements mentioned above, which are not all necessarily realizable with true circles. The number of arrangements of 6 pseudo-circles was found by Andrii Shportko and Jon Wild to be 17,552,169. - Jon Wild, Jun 03 2025
In A288559, a(5) included 26 non-circularizable pseudocircle arrangements, which generated in turn 132,546 6-pseudocircle descendants. These descendants must be excluded from A250001, which means that a tighter upper bound for A250001(6) is 17,419,623. - Andrii Shportko, Jun 06 2025

Examples

			a(2) = 3, because two circles can either be next to each other, overlap with two intersection points, or one may be located within the other (of larger radius). (As per the first comment, the limiting case where they touch in one point is [somewhat arbitrarily] excluded. This would add two more independent configurations, where one touched the other "from inside" or "from outside".) - _M. F. Hasler_, May 03 2025
		

References

  • Jon Wild, Posting to Sequence Fans Mailing List, May 15 2014.

Crossrefs

Row sums of A261070.
Apart from first term, row sums of triangles A249752, A252158, A285996, A274776, A274777.
See A275923 and A275924 for the connected arrangements. See also A288554-A288568.
Cf. A132101 (one-dimensional analog).

Extensions

a(4) is 173, not 168. Corrected by Jon Wild, Aug 08 2015
A duplicate pair of configurations in an older file was spotted by Manfred Scheucher, Aug 13 2016. The pdf and svg files here are now correct.

A037276 Start with 1; for n>1, replace n with the concatenation of its prime factors in increasing order.

Original entry on oeis.org

1, 2, 3, 22, 5, 23, 7, 222, 33, 25, 11, 223, 13, 27, 35, 2222, 17, 233, 19, 225, 37, 211, 23, 2223, 55, 213, 333, 227, 29, 235, 31, 22222, 311, 217, 57, 2233, 37, 219, 313, 2225, 41, 237, 43, 2211, 335, 223, 47, 22223, 77, 255, 317, 2213, 53, 2333
Offset: 1

Views

Author

Keywords

Examples

			If n = 2^3*5^5*11^2 = 3025000, a(n) = 222555551111 (n=2*2*2*5*5*5*5*5*11*11, then remove the multiplication signs).
		

Crossrefs

Cf. A037274, A048985, A067599, A080670, A084796. Different from A073646.
Cf. also A027746, A289660 (a(n)-n).

Programs

  • Haskell
    a037276 = read . concatMap show . a027746_row
    -- Reinhard Zumkeller, Apr 03 2012
    
  • Maple
    # This is for n>1
    read("transforms") ;
    A037276 := proc(n)
        local L,p ;
        L := [] ;
        for p in ifactors(n)[2] do
            L := [op(L),seq(op(1,p),i=1..op(2,p))] ;
        end do:
        digcatL(L) ;
    end proc: # R. J. Mathar, Oct 29 2012
  • Mathematica
    co[n_, k_] := Nest[Flatten[IntegerDigits[{#, n}]] &, n, k - 1]; Table[FromDigits[Flatten[IntegerDigits[co @@@ FactorInteger[n]]]], {n, 54}] (* Jayanta Basu, Jul 04 2013 *)
    FromDigits@ Flatten@ IntegerDigits[Table[#1, {#2}] & @@@ FactorInteger@ #] & /@ Range@ 54 (* Michael De Vlieger, Jul 14 2015 *)
  • PARI
    a(n)={ n<4 & return(n); for(i=1,#n=factor(n)~, n[1,i]=concat(vector(n[2,i],j,Str(n[1,i])))); eval(concat(n[1,]))}  \\ M. F. Hasler, Jun 19 2011
    
  • Python
    from sympy import factorint
    def a(n):
        f=factorint(n)
        l=sorted(f)
        return 1 if n==1 else int("".join(str(i)*f[i] for i in l))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 23 2017

A133500 The powertrain or power train map: Powertrain(n): if abcd... is the decimal expansion of a number n, then the powertrain of n is the number n' = a^b*c^d* ..., which ends in an exponent or a base according as the number of digits is even or odd. a(0) = 0 by convention.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 1, 6, 36, 216, 1296
Offset: 0

Views

Author

J. H. Conway, Dec 03 2007

Keywords

Comments

We take 0^0 = 1.
The fixed points are in A135385.
For 1-digit or 2-digit numbers this is the same as A075877. - R. J. Mathar, Mar 28 2012
a(A221221(n)) = A133048(A221221(n)) = A222493(n). - Reinhard Zumkeller, May 27 2013

Examples

			20 -> 2^0 = 1,
21 -> 2^1 = 2,
24 -> 2^4 = 16,
39 -> 3^9 = 19683,
623 -> 6^2*3 = 108,
etc.
		

Crossrefs

Cf. A075877, A133501 (number of steps to reach fixed point), A133502, A135385 (the conjectured list of fixed points), A135384 (numbers which converge to 2592). For records see A133504, A133505; for the fixed points that are reached when this map is iterated starting at n, see A287877.
Cf. also A133048 (powerback), A031346 and A003001 (persistence).
Cf. also A031298, A007376.

Programs

  • Haskell
    a133500 = train . reverse . a031298_row where
       train []       = 1
       train [x]      = x
       train (u:v:ws) = u ^ v * (train ws)
    -- Reinhard Zumkeller, May 27 2013
    
  • Maple
    powertrain:=proc(n) local a,i,n1,n2,t1,t2; n1:=abs(n); n2:=sign(n); t1:=convert(n1, base, 10); t2:=nops(t1); a:=1; for i from 0 to floor(t2/2)-1 do a := a*t1[t2-2*i]^t1[t2-2*i-1]; od: if t2 mod 2 = 1 then a:=a*t1[1]; fi; RETURN(n2*a); end; # N. J. A. Sloane, Dec 03 2007
  • Mathematica
    ptm[n_]:=Module[{idn=IntegerDigits[n]},If[EvenQ[Length[idn]],Times@@( #[[1]]^ #[[2]] &/@Partition[idn,2]),(Times@@(#[[1]]^#[[2]] &/@ Partition[ Most[idn],2]))Last[idn]]]; Array[ptm,70,0] (* Harvey P. Dale, Jul 15 2019 *)
  • Python
    def A133500(n):
        s = str(n)
        l = len(s)
        m = int(s[-1]) if l % 2 else 1
        for i in range(0,l-1,2):
            m *= int(s[i])**int(s[i+1])
        return m # Chai Wah Wu, Jun 16 2017

A274641 Counterclockwise square spiral constructed by greedy algorithm, so that each row, column, and diagonal contains distinct numbers. Start with 0 (so in this version a(n) = A274640(n) - 1).

Original entry on oeis.org

0, 1, 2, 3, 1, 2, 3, 4, 5, 0, 3, 5, 1, 0, 5, 4, 2, 0, 4, 1, 5, 0, 1, 3, 4, 2, 6, 7, 4, 3, 8, 6, 7, 2, 9, 10, 3, 6, 7, 5, 2, 8, 4, 6, 7, 8, 9, 10, 11, 5, 7, 8, 10, 9, 11, 12, 6, 5, 9, 8, 11, 12, 13, 14, 7, 1, 8, 11, 6, 9, 10, 12, 13, 9, 8, 5, 12, 4, 2, 14, 15, 6, 0, 9, 12, 11, 13, 10, 14, 2, 7, 4, 0, 11, 10, 13, 6, 3, 1, 15, 8, 16, 0, 7, 10
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2016, based on the entry A274640 from Zak Seidov and Kerry Mitchell, Jun 30 2016

Keywords

Comments

See A274640 for further information.
Presumably every row, column, and diagonal is a permutation of the natural numbers, but is there a proof? - N. J. A. Sloane, Jul 10 2016

Examples

			From _Jon E. Schoenfield_, Dec 26 2016: (Start)
The spiral begins:
.
   8--15---1---3---6--13--10--11---0---4---7
   |                                       |
  16   7--14--13--12--11---8---9---5---6   2
   |   |                               |   |
   0   1   3--10---9---2---7---6---8  12  14
   |   |   |                       |   |   |
   7   8   6   2---4---5---0---1   3  11  10
   |   |   |   |               |   |   |   |
  10  11   7   0   1---3---2   5   4   9  13
   |   |   |   |   |       |   |   |   |   |
  14   6   5   4   2   0---1   3   7  10  11
   |   |   |   |   |           |   |   |   |
  13   9   2   1   3---4---5---0   6   8  12
   |   |   |   |                   |   |   |
   6  10   8   5---0---1---3---4---2   7   9
   |   |   |                           |   |
   3  12   4---6---7---8---9--10--11---5   0
   |   |                                   |
  11  13---9---8---5--12---4---2--14--15---6
   |
   9--14---0--11--15---7--13--12--10--17--16
.
(End)
		

Crossrefs

Cf. A274640 (if start with 1 at center), A324481 (position of first n).
For the eight spokes see A324774-A324781.

A080670 Literal reading of the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 22, 5, 23, 7, 23, 32, 25, 11, 223, 13, 27, 35, 24, 17, 232, 19, 225, 37, 211, 23, 233, 52, 213, 33, 227, 29, 235, 31, 25, 311, 217, 57, 2232, 37, 219, 313, 235, 41, 237, 43, 2211, 325, 223, 47, 243, 72, 252, 317, 2213, 53, 233, 511, 237, 319, 229, 59, 2235
Offset: 1

Views

Author

Jon Perry, Mar 02 2003

Keywords

Comments

Exponents equal to 1 are omitted and therefore this sequence differs from A067599.
Here the first duplicate (ambiguous) term appears already with a(8)=23=a(6), in A067599 this happens only much later. - M. F. Hasler, Oct 18 2014
The number n = 13532385396179 = 13·53^2·3853·96179 = a(n) is (maybe the first?) nontrivial fixed point of this sequence, making it the first known index of a -1 in A195264. - M. F. Hasler, Jun 06 2017

Examples

			8=2^3, which reads 23, hence a(8)=23; 12=2^2*3, which reads 223, hence a(12)=223.
		

Crossrefs

See A195330, A195331 for those n for which a(n) is a contraction.
See also home primes, A037271.
See A195264 for what happens when k -> a(k) is repeatedly applied to n.
Partial sums: A287881, A287882.

Programs

  • Haskell
    import Data.Function (on)
    a080670 1 = 1
    a080670 n = read $ foldl1 (++) $
    zipWith (c `on` show) (a027748_row n) (a124010_row n) :: Integer
    where c ps es = if es == "1" then ps else ps ++ es
    -- Reinhard Zumkeller, Oct 27 2013
    
  • Maple
    ifsSorted := proc(n)
            local fs,L,p ;
            fs := sort(convert(numtheory[factorset](n),list)) ;
            L := [] ;
            for p in fs do
                    L := [op(L),[p,padic[ordp](n,p)]] ;
            end do;
            L ;
    end proc:
    A080670 := proc(n)
            local a,p ;
            if n = 1 then
                    return 1;
            end if;
            a := 0 ;
            for p in ifsSorted(n) do
                    a := digcat2(a,op(1,p)) ;
                    if op(2,p) > 1 then
                            a := digcat2(a,op(2,p)) ;
                    end if;
            end do:
            a ;
    end proc: # R. J. Mathar, Oct 02 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n=1, 1, (l->
          parse(cat(seq(`if`(l[i, 2]=1, l[i, 1], [l[i, 1],
          l[i, 2]][]), i=1..nops(l)))))(sort(ifactors(n)[2])))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 17 2020
  • Mathematica
    f[n_] := FromDigits[ Flatten@ IntegerDigits[ Flatten[ FactorInteger@ n /. {1 -> {}}]]]; f[1] = 1; Array[ f, 60] (* Robert G. Wilson v, Mar 02 2003 and modified Jul 22 2014 *)
  • PARI
    A080670(n)=if(n>1, my(f=factor(n),s=""); for(i=1,#f~,s=Str(s,f[i,1],if(f[i,2]>1, f[i,2],""))); eval(s),1) \\ Charles R Greathouse IV, Oct 27 2013; case n=1 added by M. F. Hasler, Oct 18 2014
    
  • PARI
    A080670(n)=if(n>1,eval(concat(apply(f->Str(f[1],if(f[2]>1,f[2],"")),Vec(factor(n)~)))),1) \\ M. F. Hasler, Oct 18 2014
    
  • Python
    import sympy
    [int(''.join([str(y) for x in sorted(sympy.ntheory.factorint(n).items()) for y in x if y != 1])) for n in range(2,100)] # compute a(n) for n > 1
    # Chai Wah Wu, Jul 15 2014

Extensions

Edited and extended by Robert G. Wilson v, Mar 02 2003
Showing 1-10 of 29 results. Next