cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A195264 Iterate x -> A080670(x) (replace x with the concatenation of the primes and exponents in its prime factorization) starting at n until reach 1 or a prime (which is then the value of a(n)); or a(n) = -1 if a prime is never reached.

Original entry on oeis.org

1, 2, 3, 211, 5, 23, 7, 23, 2213, 2213, 11, 223, 13, 311, 1129, 233, 17, 17137, 19
Offset: 1

Views

Author

N. J. A. Sloane, Sep 14 2011, based on discussions on the Sequence Fans Mailing List by Alonso del Arte, Franklin T. Adams-Watters, D. S. McNeil, Charles R Greathouse IV, Sean A. Irvine, and others

Keywords

Comments

J. H. Conway offered $1000 for a proof or disproof for his conjecture that every number eventually reaches a 1 or a prime - see OEIS50 link. - N. J. A. Sloane, Oct 15 2014
However, James Davis has discovered that a(13532385396179) = -1. This number D = 13532385396179 = (1407*10^5+1)*96179 = 13*53^2*3853*96179 is clearly fixed by the map x -> A080670(x), and so never reaches 1 or a prime. - Hans Havermann, Jun 05 2017
The number n = 3^6 * 2331961591220850480109739369 * 21313644799483579440006455257 is a near-miss for another nonprime fixed point. Unfortunately here the last two factors only look like primes (they have no prime divisors < 10), but in fact both are composite. - Robert Gerbicz, Jun 07 2017
The number D' = 13^532385396179 maps to D and so is a much larger number with a(D') = -1. Repeating this process (by finding a prime prefix of D') should lead to an infinite sequence of counterexamples to Conway's conjecture. - Hans Havermann, Jun 09 2017
The first 47 digits of D' form a prime P = 68971066936841703995076128866117893410448319579, so if Q denotes the remaining digits of 13^532385396179 then D'' = P^Q is another counterexample. - Robert Gerbicz, Jun 10 2017
This sequence is different from A037274. Here 8 = 2^3 -> 23 (a prime), whereas in A037274 8 = 2^3 -> 222 -> ... -> 3331113965338635107 (a prime). - N. J. A. Sloane, Oct 12 2014
The value of a(20) is presently unknown (see A195265).

Examples

			4 = 2^2 -> 22 =2*11 -> 211, prime, so a(4) = 211.
9 = 3^2 -> 32 = 2^5 -> 25 = 5^2 -> 52 = 2^2*13 -> 2213, prime, so a(9)=2213.
		

Crossrefs

A variant of the home primes, A037271. Cf. A080670, A195265 (trajectory of 20), A195266 (trajectory of 105), A230305, A084318. A230627 (base-2), A290329 (base-3)

Programs

  • Mathematica
    f[1] := 1; f[n_] := Block[{p = Flatten[FactorInteger[n]]}, k = Length[p]; While[k > 0, If[p[[k]] == 1, p = Delete[p, k]]; k--]; FromDigits[Flatten[IntegerDigits[p]]]]; Table[FixedPoint[f, n], {n, 19}] (* Alonso del Arte, based on the program for A080670, Sep 14 2011 *)
    fn[n_] := FromDigits[Flatten[IntegerDigits[DeleteCases[Flatten[
    FactorInteger[n]], 1]]]];
    Table[NestWhile[fn, n, # != 1 && ! PrimeQ[#] &], {n, 19}] (* Robert Price, Mar 15 2020 *)
  • PARI
    a(n)={n>1 && while(!ispseudoprime(n), n=A080670(n));n} \\ M. F. Hasler, Oct 12 2014

A287874 Concatenate prime factorization as in A080670, but write everything in binary.

Original entry on oeis.org

1, 10, 11, 1010, 101, 1011, 111, 1011, 1110, 10101, 1011, 101011, 1101, 10111, 11101, 10100, 10001, 101110, 10011, 1010101, 11111, 101011, 10111, 101111, 10110, 101101, 1111, 1010111, 11101, 1011101, 11111, 10101, 111011, 1010001, 101111, 10101110, 100101
Offset: 1

Views

Author

N. J. A. Sloane, Jun 15 2017

Keywords

Comments

As in A080670 the prime factorization of n is written as p1^e1*...*pN^eN (except for exponents eK = 1 which are omitted), with all factors and exponents in binary (cf. A007088). Then "^" and "*" signs are dropped and all binary digits are concatenated.
See A230625 for the terms written in base 10, and for further information (fixed points, trajectories).

Examples

			a(1) = 1 by convention.
a(2) = 10 (= 2 written in binary).
a(4) = 1010 = concatenate(10,10), since 4 = 2^2 = 10[2] ^ 10[2].
a(6) = 1011 = concatenate(10,11), since 6 = 2*3 = 10[2] * 11[2].
a(8) = 1011 = concatenate(10,11), since 8 = 2^3 = 10[2] ^ 11[2].
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F, L, i;
        F:= map(op,subs(1=NULL, sort(ifactors(n)[2], (a,b) -> a[1] < b[1])));
        F:= map(convert, F, binary);
        L:= map(length,F);
        L:= ListTools:-Reverse(ListTools:-PartialSums(ListTools:-Reverse(L)));
        add(F[i]*10^L[i+1],i=1..nops(F)-1)+F[-1];
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Jun 20 2017
  • Mathematica
    fn[1] = 1; fn[n_] := FromDigits[Flatten[IntegerDigits[DeleteCases[Flatten[FactorInteger[n]], 1], 2]]];
    Table[fn[n], {n, 37}] (* Robert Price, Mar 16 2020 *)
  • PARI
    A287874(n)=if(n>1,fromdigits(concat(apply(binary,select(t->t>1,concat(Col(factor(n))~)))),10),1) \\ M. F. Hasler, Jun 21 2017
    
  • Python
    from sympy import factorint
    def a(n):
        f=factorint(n)
        return 1 if n==1 else int("".join(bin(i)[2:] + bin(f[i])[2:] if f[i]!=1 else bin(i)[2:] for i in f))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 23 2017

Formula

a(n) = A007088(A230625(n)). - R. J. Mathar, Jun 16 2017

Extensions

Edited by M. F. Hasler, Jun 21 2017

A230305 Iterate A080670 starting at n; a(n) = number of steps to reach a prime, or -1 if no prime is ever reached.

Original entry on oeis.org

0, 0, 2, 0, 1, 0, 1, 4, 3, 0, 1, 0, 3, 4, 2, 0, 3, 0
Offset: 2

Views

Author

N. J. A. Sloane, Oct 27 2013

Keywords

Comments

If n is a prime, a(n) = 0.
a(20) is presently unknown - see A195265 for the trajectory.

Examples

			9 -> 32 -> 25 -> 52 -> 2213, which is prime, taking 4 steps, so a(9) = 4.
		

Crossrefs

Cf. A080670, A195264 (the prime that is reached), A195265, A067599, A037271 (home primes).

Programs

  • Mathematica
    fn[n_] := FromDigits[Flatten[IntegerDigits[DeleteCases[Flatten[FactorInteger[n]], 1]]]];
    Map[Length, Table[NestWhileList[fn, n, # != 1 && ! PrimeQ[#] &], {n, 2,
    19}], {1}] - 1 (* Robert Price, Mar 16 2020 *)

A195330 Numbers n such that A080670(n) < n.

Original entry on oeis.org

32, 64, 81, 121, 125, 128, 169, 243, 256, 289, 320, 343, 361, 375, 384, 405, 448, 486, 512, 529, 567, 625, 640, 686, 729, 768, 841, 875, 896, 961, 1024, 1029, 1215, 1250, 1280, 1331, 1369, 1458, 1536, 1681, 1701, 1715, 1792, 1849, 1875, 2048, 2187, 2197, 2209, 2401, 2430, 2500, 2560, 2592, 2656, 2662, 2738, 2744, 2752, 2809, 2816, 2848, 2916, 2944, 3008, 3072, 3104, 3125, 3136, 3200, 3328, 3362, 3375, 3392, 3402, 3430, 3456, 3481, 3483, 3584, 3645, 3698, 3712
Offset: 1

Views

Author

N. J. A. Sloane, Sep 15 2011

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=1, 1, (l->
          parse(cat(seq(`if`(l[i, 2]=1, l[i, 1], [l[i, 1],
          l[i, 2]][]), i=1..nops(l)))))(sort(ifactors(n)[2])))
        end:
    a:= proc(n) option remember; local k; for k from
          `if`(n=1, 0, a(n-1))+1 while b(k)>=k do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 17 2020
  • Mathematica
    A080670 = Cases[Import["https://oeis.org/A080670/b080670.txt", "Table"], {, }][[All, 2]];
    Select[Range[3712], A080670[[#]] < # &] (* Robert Price, Mar 17 2020 *)
  • PARI
    is(n,f=factor(n))=eval(concat(vector(#f~,i,if(f[i,2]==1, Str(f[i,1]), Str(f[i,1],f[i,2])))))Charles R Greathouse IV, Mar 18 2020

A287881 Partial sums of A080670.

Original entry on oeis.org

1, 3, 6, 28, 33, 56, 63, 86, 118, 143, 154, 377, 390, 417, 452, 476, 493, 725, 744, 969, 1006, 1217, 1240, 1473, 1525, 1738, 1771, 1998, 2027, 2262, 2293, 2318, 2629, 2846, 2903, 5135, 5172, 5391, 5704, 5939, 5980, 6217, 6260, 8471, 8796, 9019, 9066, 9309, 9381, 9633, 9950, 12163, 12216, 12449, 12960
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2017

Keywords

Comments

It would be nice to have an estimate of how fast this sequence grows.
Robert Israel observed (see link) that for the first 100000 terms, a(n) is roughly c*n^2*(log n)^2, where c is between 0.2 and 0.25. However, the ratio a(n)/(n log n)^2 does not seem to be converging.

Crossrefs

Cf. A080670.

Programs

  • Maple
    G:= proc(n) local L;
        local F;
        F:= sort(ifactors(n)[2],(a,b) -> a[1]Robert Israel, Jun 19 2017
  • Mathematica
    A080670 = Cases[Import["https://oeis.org/A080670/b080670.txt", "Table"], {, }][[All, 2]];
    Accumulate[A080670] (* Robert Price, Mar 16 2020 *)

A195265 Trajectory of 20 under iteration of the map x -> A080670(x).

Original entry on oeis.org

20, 225, 3252, 223271, 297699, 399233, 715623, 3263907, 32347303, 160720129, 1153139393, 72171972859, 736728093411, 3245576031137, 11295052366467, 310807934835791, 1789205424940407, 31745337977379983, 1122916740775279751, 7251536377635958081, 151243563319717018007
Offset: 1

Views

Author

N. J. A. Sloane, Sep 14 2011, based on a posting to the Sequence Fans Mailing List by Alonso del Arte

Keywords

Comments

The table that I submitted for A195264 (see the second link here) is still actively maintained by me. That includes all unknown-outcome evolutions starting with numbers up to 10000. If you click in that table on the 'unknown' beside the number 20 it will give you the current state of the evolution of the number 20. There was a bottleneck at Alonso20(102) [= A195265(103); we're using offset zero for our evolutions] involving a 62-digit factor, cracked by "Mathew" in MersenneForum on August 13. Sean A. Irvine subsequently extended that to Alonso20(109). The unfactored composite in Alonso20(110) is 178 digits long. I maintain links to sorted lists of unfactored composites at the bottom of the table. If anyone can factor any of these composites, submit the factorization to factordb.com and I will (eventually) find it; a personal heads-up would of course be appreciated. - Hans Havermann, Oct 27 2013

Examples

			20 = 2^2*5 -> 225 = 3^2*5^2 -> 3252 = 2^2*3*271 -> 223271 ...
		

Crossrefs

Programs

  • Maple
    # See A195266
  • Mathematica
    A080670[n_] := ToExpression@StringJoin[ToString/@Flatten[DeleteCases[FactorInteger[n], 1, -1]]]; NestWhileList[A080670, i = 1; 20, (PrintTemporary[{i++, #}]; ! PrimeQ[#]) &, 1, 40] (* Wouter Meeussen, Oct 27 2013 *)

Extensions

Alonso del Arte computed 40 terms, D. S. McNeil extended it to 66 terms, Sean A. Irvine to 70 terms, Hans Havermann (Oct 27 2013) to 110 terms.

A195266 Trajectory of 105 under iteration of the map x -> A080670(x).

Original entry on oeis.org

105, 357, 3717, 32759, 174147, 358049, 379677, 3196661, 13245897, 373120347, 31961239449, 364811643843, 3474632755849, 7148938489519, 19530970872089, 731453184134581, 1069684240583849, 11451757737372871, 18163269379764491, 99042547183388553, 344278174560973471, 71388716692555572127, 148872380947952962303, 1453102458624189919451, 11245912921175349453489
Offset: 1

Views

Author

N. J. A. Sloane, Sep 14 2011, based on a posting to the Sequence Fans Mailing List by Alonso del Arte

Keywords

Crossrefs

Programs

  • Maple
    read("transforms");
    # insert A080670 here
    A195266 := proc(n)
            option remember;
            if n = 1 then
                    105;
            else
                    A080670(procname(n-1)) ;
            end if;
    end proc: # R. J. Mathar, Oct 02 2011

A195331 A080670 applied to A195330(n).

Original entry on oeis.org

25, 26, 34, 112, 53, 27, 132, 35, 28, 172, 265, 73, 192, 353, 273, 345, 267, 235, 29, 232, 347, 54, 275, 273, 36, 283, 292, 537, 277, 312, 210, 373, 355, 254, 285, 113, 372, 236, 293, 412, 357, 573, 287, 432, 354, 211, 37, 133, 472, 74, 2355, 2254, 295, 2534, 2583, 2113, 2372, 2373, 2643, 532, 2811, 2589, 2236, 2723, 2647, 2103, 2597, 55, 2672, 2752, 2813, 2412, 3353, 2653, 2357, 2573, 2733, 592, 3443, 297, 365, 2432, 2729, 612, 2354, 2659, 3447, 2835, 2435, 2661, 2731
Offset: 1

Views

Author

N. J. A. Sloane, Sep 15 2011

Keywords

Comments

A195330 gives the numbers k such that A080670(k) < k; this sequence gives the corresponding values of A080670(k).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=1, 1, (l->
          parse(cat(seq(`if`(l[i, 2]=1, l[i, 1], [l[i, 1],
          l[i, 2]][]), i=1..nops(l)))))(sort(ifactors(n)[2])))
        end:
    g:= proc(n) option remember; local k; for k from
          `if`(n=1, 0, g(n-1))+1 while b(k)>=k do od; k
        end:
    a:= n-> b(g(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 17 2020
  • Mathematica
    A080670 = Cases[Import["https://oeis.org/A080670/b080670.txt", "Table"], {, }][[All, 2]];
    A195330 = Cases[Import["https://oeis.org/A195330/b195330.txt", "Table"], {, }][[All, 2]];
    Table[A080670[[n]], {n, A195330}](* Robert Price, Mar 17 2020 *)

A287882 a(n) = Sum_{ i <= n, i squarefree} A080670(i).

Original entry on oeis.org

1, 3, 6, 6, 11, 34, 41, 41, 41, 66, 77, 77, 90, 117, 152, 152, 169, 169, 188, 188, 225, 436, 459, 459, 459, 672, 672, 672, 701, 936, 967, 967, 1278, 1495, 1552, 1552, 1589, 1808, 2121, 2121, 2162, 2399, 2442, 2442, 2442, 2665, 2712, 2712, 2712, 2712, 3029, 3029, 3082, 3082, 3593, 3593, 3912
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2017

Keywords

Comments

A lower bound on A287881.

Crossrefs

Programs

  • Mathematica
    A080670 = Cases[Import["https://oeis.org/A080670/b080670.txt", "Table"], {, }][[All, 2]];
    Accumulate[Table[If[SquareFreeQ[n], A080670[[n]], 0], {n, 57}] ] (* Robert Price, Mar 16 2020 *)

A288519 a(n) = least k such that A080670(k) begins with n.

Original entry on oeis.org

1, 2, 3, 41, 5, 61, 7, 83, 97, 101, 11, 127, 13, 149, 151, 163, 17, 181, 19, 2003, 22, 4, 6, 16, 10, 64, 14, 166, 29, 307, 31, 9, 27, 81, 15, 183, 21, 249, 291, 401, 41, 421, 43, 443, 457, 461, 47, 487, 491, 503, 55, 25, 53, 205, 265, 305, 35, 415, 59, 601, 61
Offset: 1

Views

Author

Rémy Sigrist, Jun 10 2017

Keywords

Comments

a(p) <= p for any prime p.
a(n) <= A018800(n) for any n > 0.

Examples

			The following table shows the first values from A080670, as well as the terms that can be derived from it:
k       A080670(k)      Derived terms
--      ----------      -------------
1       1               a(1) = 1
2       2               a(2) = 2
3       3               a(3) = 3
4       22              a(22) = 4
5       5               a(5) = 5
6       23              a(23) = 6
7       7               a(7) = 7
8       23              none
9       32              a(32) = 9
10      25              a(25) = 10
11      11              a(11) = 11
12      223             a(223) = 12
13      13              a(13) = 13
14      27              a(27) = 14
15      35              a(35) = 15
16      24              a(24) = 16
17      17              a(17) = 17
18      232             a(232) = 18
19      19              a(19) = 19
20      225             a(225) = 20
21      37              a(37) = 21
22      211             a(211) = 22, a(21) = 22
23      23              none
24      233             a(233) = 24
25      52              a(52) = 25
		

Crossrefs

Programs

  • Mathematica
    s = Array[Flatten@ Map[IntegerDigits, DeleteCases[ Flatten@ FactorInteger@ #, 1] /. {} -> {1}] &, 10^4]; FromDigits /@ Table[ Function[k, SelectFirst[s, If[Length@# > 0, #[[1, 1]] == 1, False] &@ SequencePosition[#, k] &]]@ IntegerDigits[n], {n, 61}] (* Michael De Vlieger, Jun 11 2017 *)
Showing 1-10 of 27 results. Next