cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A195264 Iterate x -> A080670(x) (replace x with the concatenation of the primes and exponents in its prime factorization) starting at n until reach 1 or a prime (which is then the value of a(n)); or a(n) = -1 if a prime is never reached.

Original entry on oeis.org

1, 2, 3, 211, 5, 23, 7, 23, 2213, 2213, 11, 223, 13, 311, 1129, 233, 17, 17137, 19
Offset: 1

Views

Author

N. J. A. Sloane, Sep 14 2011, based on discussions on the Sequence Fans Mailing List by Alonso del Arte, Franklin T. Adams-Watters, D. S. McNeil, Charles R Greathouse IV, Sean A. Irvine, and others

Keywords

Comments

J. H. Conway offered $1000 for a proof or disproof for his conjecture that every number eventually reaches a 1 or a prime - see OEIS50 link. - N. J. A. Sloane, Oct 15 2014
However, James Davis has discovered that a(13532385396179) = -1. This number D = 13532385396179 = (1407*10^5+1)*96179 = 13*53^2*3853*96179 is clearly fixed by the map x -> A080670(x), and so never reaches 1 or a prime. - Hans Havermann, Jun 05 2017
The number n = 3^6 * 2331961591220850480109739369 * 21313644799483579440006455257 is a near-miss for another nonprime fixed point. Unfortunately here the last two factors only look like primes (they have no prime divisors < 10), but in fact both are composite. - Robert Gerbicz, Jun 07 2017
The number D' = 13^532385396179 maps to D and so is a much larger number with a(D') = -1. Repeating this process (by finding a prime prefix of D') should lead to an infinite sequence of counterexamples to Conway's conjecture. - Hans Havermann, Jun 09 2017
The first 47 digits of D' form a prime P = 68971066936841703995076128866117893410448319579, so if Q denotes the remaining digits of 13^532385396179 then D'' = P^Q is another counterexample. - Robert Gerbicz, Jun 10 2017
This sequence is different from A037274. Here 8 = 2^3 -> 23 (a prime), whereas in A037274 8 = 2^3 -> 222 -> ... -> 3331113965338635107 (a prime). - N. J. A. Sloane, Oct 12 2014
The value of a(20) is presently unknown (see A195265).

Examples

			4 = 2^2 -> 22 =2*11 -> 211, prime, so a(4) = 211.
9 = 3^2 -> 32 = 2^5 -> 25 = 5^2 -> 52 = 2^2*13 -> 2213, prime, so a(9)=2213.
		

Crossrefs

A variant of the home primes, A037271. Cf. A080670, A195265 (trajectory of 20), A195266 (trajectory of 105), A230305, A084318. A230627 (base-2), A290329 (base-3)

Programs

  • Mathematica
    f[1] := 1; f[n_] := Block[{p = Flatten[FactorInteger[n]]}, k = Length[p]; While[k > 0, If[p[[k]] == 1, p = Delete[p, k]]; k--]; FromDigits[Flatten[IntegerDigits[p]]]]; Table[FixedPoint[f, n], {n, 19}] (* Alonso del Arte, based on the program for A080670, Sep 14 2011 *)
    fn[n_] := FromDigits[Flatten[IntegerDigits[DeleteCases[Flatten[
    FactorInteger[n]], 1]]]];
    Table[NestWhile[fn, n, # != 1 && ! PrimeQ[#] &], {n, 19}] (* Robert Price, Mar 15 2020 *)
  • PARI
    a(n)={n>1 && while(!ispseudoprime(n), n=A080670(n));n} \\ M. F. Hasler, Oct 12 2014

A080670 Literal reading of the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 22, 5, 23, 7, 23, 32, 25, 11, 223, 13, 27, 35, 24, 17, 232, 19, 225, 37, 211, 23, 233, 52, 213, 33, 227, 29, 235, 31, 25, 311, 217, 57, 2232, 37, 219, 313, 235, 41, 237, 43, 2211, 325, 223, 47, 243, 72, 252, 317, 2213, 53, 233, 511, 237, 319, 229, 59, 2235
Offset: 1

Views

Author

Jon Perry, Mar 02 2003

Keywords

Comments

Exponents equal to 1 are omitted and therefore this sequence differs from A067599.
Here the first duplicate (ambiguous) term appears already with a(8)=23=a(6), in A067599 this happens only much later. - M. F. Hasler, Oct 18 2014
The number n = 13532385396179 = 13·53^2·3853·96179 = a(n) is (maybe the first?) nontrivial fixed point of this sequence, making it the first known index of a -1 in A195264. - M. F. Hasler, Jun 06 2017

Examples

			8=2^3, which reads 23, hence a(8)=23; 12=2^2*3, which reads 223, hence a(12)=223.
		

Crossrefs

See A195330, A195331 for those n for which a(n) is a contraction.
See also home primes, A037271.
See A195264 for what happens when k -> a(k) is repeatedly applied to n.
Partial sums: A287881, A287882.

Programs

  • Haskell
    import Data.Function (on)
    a080670 1 = 1
    a080670 n = read $ foldl1 (++) $
    zipWith (c `on` show) (a027748_row n) (a124010_row n) :: Integer
    where c ps es = if es == "1" then ps else ps ++ es
    -- Reinhard Zumkeller, Oct 27 2013
    
  • Maple
    ifsSorted := proc(n)
            local fs,L,p ;
            fs := sort(convert(numtheory[factorset](n),list)) ;
            L := [] ;
            for p in fs do
                    L := [op(L),[p,padic[ordp](n,p)]] ;
            end do;
            L ;
    end proc:
    A080670 := proc(n)
            local a,p ;
            if n = 1 then
                    return 1;
            end if;
            a := 0 ;
            for p in ifsSorted(n) do
                    a := digcat2(a,op(1,p)) ;
                    if op(2,p) > 1 then
                            a := digcat2(a,op(2,p)) ;
                    end if;
            end do:
            a ;
    end proc: # R. J. Mathar, Oct 02 2011
    # second Maple program:
    a:= proc(n) option remember; `if`(n=1, 1, (l->
          parse(cat(seq(`if`(l[i, 2]=1, l[i, 1], [l[i, 1],
          l[i, 2]][]), i=1..nops(l)))))(sort(ifactors(n)[2])))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 17 2020
  • Mathematica
    f[n_] := FromDigits[ Flatten@ IntegerDigits[ Flatten[ FactorInteger@ n /. {1 -> {}}]]]; f[1] = 1; Array[ f, 60] (* Robert G. Wilson v, Mar 02 2003 and modified Jul 22 2014 *)
  • PARI
    A080670(n)=if(n>1, my(f=factor(n),s=""); for(i=1,#f~,s=Str(s,f[i,1],if(f[i,2]>1, f[i,2],""))); eval(s),1) \\ Charles R Greathouse IV, Oct 27 2013; case n=1 added by M. F. Hasler, Oct 18 2014
    
  • PARI
    A080670(n)=if(n>1,eval(concat(apply(f->Str(f[1],if(f[2]>1,f[2],"")),Vec(factor(n)~)))),1) \\ M. F. Hasler, Oct 18 2014
    
  • Python
    import sympy
    [int(''.join([str(y) for x in sorted(sympy.ntheory.factorint(n).items()) for y in x if y != 1])) for n in range(2,100)] # compute a(n) for n > 1
    # Chai Wah Wu, Jul 15 2014

Extensions

Edited and extended by Robert G. Wilson v, Mar 02 2003

A037271 Number of steps to reach a prime under "replace n with concatenation of its prime factors" when applied to n-th composite number, or -1 if no such number exists.

Original entry on oeis.org

2, 1, 13, 2, 4, 1, 5, 4, 4, 1, 15, 1, 1, 2, 3, 4, 4, 1, 2, 2, 1, 5, 3, 2, 2, 1, 9, 2, 9, 6, 1, 15
Offset: 1

Views

Author

Keywords

Comments

a(33) is presently unknown: starting with 49, no prime has been reached after 110 steps. See A037274 for the latest information.

Examples

			Starting with 14 (the seventh composite number) we get 14=2*7, 27=3*3*3, 333=3*3*37, 3337=47*71, 4771=13*367, 13367 is prime; so a(7)=5.
		

Crossrefs

Programs

  • Haskell
    a037271 = length . takeWhile ((== 0) . a010051'') .
                                 iterate a037276 . a002808
    -- Reinhard Zumkeller, Apr 03 2012
  • Mathematica
    maxComposite = 49; maxIter = 40; concat[n_] := FromDigits[ Flatten[ IntegerDigits /@ Flatten[ Apply[ Table, {#[[1]], {#[[2]]}} & /@ FactorInteger[n], {1}]]]]; composites = Select[ Range[2, maxComposite], ! PrimeQ[#] &]; a[n_] := ( lst = NestWhileList[ concat, composites[[n]], ! PrimeQ[#] &, 1, maxIter]; If[PrimeQ[ Last[lst]], Length[lst] - 1, - 1]); Table[a[n], {n, 1, Length[composites]}] (* Jean-François Alcover, Jul 10 2012 *)

A230626 Iterate the map x -> A230625(x) starting at n; sequence gives number of steps to reach a prime, or -1 if no prime is ever reached.

Original entry on oeis.org

0, 0, 3, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 1, 4, 0, 4, 0, 3, 1, 1, 0, 1, 2, 4, 2, 3, 0, 2, 0, 2, 1, 5, 1, 7, 0, 1, 1, 2, 0, 2, 0, 2, 3, 3, 0, 1, 3, 3, 1, 1, 0, 1, 3, 2, 6, 2, 0, 1, 0, 2, 2, 2, 2, 3, 0, 1, 2, 6, 0, 2, 0, 4, 4, 3, 2, 2, 0, 4, 4, 3, 0, 5, 2, 2, 2, 3
Offset: 2

Views

Author

N. J. A. Sloane, Oct 27 2013

Keywords

Comments

David J. Seal found that the number 255987 is fixed by the map described in A230625 (or equally A287874), so a(255987) = -1. - N. J. A. Sloane, Jun 15 2017
I also observe that the numbers 1007 and 1269 are mapped to each other by that map, as are the numbers 1503 and 3751 (see the b-file submitted by Chai Wah Wu for A230625). So a(1007) = a(1269) = a(1503) = a(3751) = -1. - David J. Seal, Jun 16 2017
a(217) = a(255) = a(446) = a(558) = a(717) = a(735) = a(775) = a(945) = a(958) = -1 since the trajectory either converges to (1007,1269) or to (1503,3751). 255987 has several preimages, e.g. a(7^25*31^19) = a(3^28*7^7*19) = a(7^12*31^51) = -1. a(3568) = 74 ending in the prime 318792605899852268194734519209581. - Chai Wah Wu, Jun 16 2017
See A287878 for the trajectory of 234, which ends at a prime at step 103. - N. J. A. Sloane, Jun 18 2017
See A288894 for the trajectory of 3932. - Sean A. Irvine, Jun 18 2017

Examples

			Starting at 18: 18 = 2*3^2 = 10*11^10 in binary -> 101110 = 46 = 2*23 = 10*10111 -> 1010111 = 87 = 3*29 = 11*11101 -> 1111101 = 125 = 5^3 = 101^11 -> 10111 = 23, prime, taking 4 steps, so a(18) = 4.
		

Crossrefs

Programs

  • Mathematica
    fn[n_] := FromDigits[Flatten[IntegerDigits[ReplaceAll[FactorInteger[n], {x_, 1} -> {x}], 2]], 2];
    Map[Length, Table[NestWhileList[fn, n, # != 1 && ! PrimeQ[#] &], {n, 2, 40}], {1}] - 1 (* Robert Price, Mar 16 2020 *)

Extensions

More terms from Chai Wah Wu, Jul 15 2014

A080695 Concatenation of the prime power factors (with maximal exponent) of n; a(1) = 1 by convention.

Original entry on oeis.org

1, 2, 3, 4, 5, 23, 7, 8, 9, 25, 11, 43, 13, 27, 35, 16, 17, 29, 19, 45, 37, 211, 23, 83, 25, 213, 27, 47, 29, 235, 31, 32, 311, 217, 57, 49, 37, 219, 313, 85, 41, 237, 43, 411, 95, 223, 47, 163, 49, 225, 317, 413, 53, 227, 511, 87, 319, 229, 59, 435, 61, 231, 97, 64
Offset: 1

Views

Author

Vladeta Jovovic, Mar 03 2003

Keywords

Comments

a(n) = n iff n is 1 or a prime power; otherwise, a(n) > n. - Ivan Neretin, May 31 2016

Examples

			a(67500) = a(2^2*3^3*5^4) = a(4*27*625) = 427625.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@Flatten@IntegerDigits[#[[1]]^#[[2]] & /@ FactorInteger[n]], {n, 64}] (* Ivan Neretin, May 31 2016 *)

Extensions

Edited by Charles R Greathouse IV, Apr 29 2010

A195265 Trajectory of 20 under iteration of the map x -> A080670(x).

Original entry on oeis.org

20, 225, 3252, 223271, 297699, 399233, 715623, 3263907, 32347303, 160720129, 1153139393, 72171972859, 736728093411, 3245576031137, 11295052366467, 310807934835791, 1789205424940407, 31745337977379983, 1122916740775279751, 7251536377635958081, 151243563319717018007
Offset: 1

Views

Author

N. J. A. Sloane, Sep 14 2011, based on a posting to the Sequence Fans Mailing List by Alonso del Arte

Keywords

Comments

The table that I submitted for A195264 (see the second link here) is still actively maintained by me. That includes all unknown-outcome evolutions starting with numbers up to 10000. If you click in that table on the 'unknown' beside the number 20 it will give you the current state of the evolution of the number 20. There was a bottleneck at Alonso20(102) [= A195265(103); we're using offset zero for our evolutions] involving a 62-digit factor, cracked by "Mathew" in MersenneForum on August 13. Sean A. Irvine subsequently extended that to Alonso20(109). The unfactored composite in Alonso20(110) is 178 digits long. I maintain links to sorted lists of unfactored composites at the bottom of the table. If anyone can factor any of these composites, submit the factorization to factordb.com and I will (eventually) find it; a personal heads-up would of course be appreciated. - Hans Havermann, Oct 27 2013

Examples

			20 = 2^2*5 -> 225 = 3^2*5^2 -> 3252 = 2^2*3*271 -> 223271 ...
		

Crossrefs

Programs

  • Maple
    # See A195266
  • Mathematica
    A080670[n_] := ToExpression@StringJoin[ToString/@Flatten[DeleteCases[FactorInteger[n], 1, -1]]]; NestWhileList[A080670, i = 1; 20, (PrintTemporary[{i++, #}]; ! PrimeQ[#]) &, 1, 40] (* Wouter Meeussen, Oct 27 2013 *)

Extensions

Alonso del Arte computed 40 terms, D. S. McNeil extended it to 66 terms, Sean A. Irvine to 70 terms, Hans Havermann (Oct 27 2013) to 110 terms.
Showing 1-6 of 6 results.