Manfred Scheucher has authored 43 sequences. Here are the ten most recent ones:
A368761
Number of labeled split graphs on n vertices such that {1..k} is independent and {k+1..n} is a clique for some k in {0..n}.
Original entry on oeis.org
1, 2, 6, 24, 128, 928, 9280, 129152, 2515200, 68780544, 2647000064, 143580989440, 10988411686912, 1187350176604160, 181232621966082048, 39089521693818912768, 11916533065969825808384, 5135497592471003032846336, 3128995097443083790244380672, 2695613904312277811648715554816
Offset: 1
-
seq(1 + add((2^k-1)*2^((n-1-k)*k),k=1..n-1),n=1..20); # Georg Fischer_, May 28 2024
-
def f(n): return 1+sum((2**k-1)*2**((n-1-k)*k) for k in range(1,n))
A367448
Number of chordal graphs on n vertices with a fixed perfect elimination ordering (e.g., 1,2,3,...,n).
Original entry on oeis.org
1, 2, 7, 39, 324, 3839, 62973, 1402792, 41946319, 1673580047, 88922215948, 6297931501377, 596303138919753, 75787556639822258, 12991109500044250083, 3018313885461813882295, 955168488432838276254520, 413639698066068492610331231, 246197679553110860511406200613, 202212713843977008653180874488520
Offset: 1
A363586
a(n) is the number of mappings X:{{1..n} choose 3}->{+,-} such that X(a,b,c) = X(b,c,d) implies X(a,b,c) = X(a,b,d) = X(a,c,d) = X(b,c,d) for a < b < c < d.
Original entry on oeis.org
2, 10, 120, 3284, 199724, 26680618, 7782067930, 4936744315756
Offset: 3
A361564
Number of (n-3)-connected unlabeled n-node graphs.
Original entry on oeis.org
4, 6, 10, 17, 25, 39, 59, 87, 127, 186
Offset: 3
- M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.
A361578
Number of 5-connected polyhedra (or 5-connected simple planar graphs) with n nodes.
Original entry on oeis.org
1, 0, 1, 1, 5, 8, 30, 85, 382, 1550, 7352
Offset: 12
- M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.
Cf.
A049373 (planar graphs with minimum degree~5) and
A111358 (5-connected planar trianguations)
A361367
Number of weakly 2-connected simple digraphs with n unlabeled nodes.
Original entry on oeis.org
7, 129, 7447, 1399245, 853468061, 1774125803324, 12983268697759210, 340896057593147232397, 32512334188761655225275067, 11365639780174824680535568799361, 14668665138188644335253106665956458513, 70315069858161131939222463684374769308619684
Offset: 3
- M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.
-
\\ See links in A339645 for combinatorial species functions.
edges(v) = {2*sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)}
graphsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 2^edges(p) * sMonomial(p)); s/n!}
graphsSeries(n)={sum(k=0, n, graphsCycleIndex(k)*x^k) + O(x*x^n)}
cycleIndexSeries(n)={my(g=graphsSeries(n), gc=sLog(g), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
{ my(N=15); Vec(-2*x^2 + OgfSeries(cycleIndexSeries(N))) } \\ Andrew Howroyd, Mar 09 2023
A361366
Number of unlabeled simple planar digraphs with n nodes.
Original entry on oeis.org
1, 3, 16, 218, 9026, 907123
Offset: 1
- M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.
A361368
Number of weakly connected simple planar digraphs with n unlabeled nodes.
Original entry on oeis.org
2, 13, 199, 8782, 897604
Offset: 2
- M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.
A361369
Number of weakly 2-connected simple planar digraphs with n unlabeled nodes.
Original entry on oeis.org
7, 129, 6865, 774052
Offset: 3
- M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.
A361371
Number of weakly 3-connected simple planar digraphs with n unlabeled nodes.
Original entry on oeis.org
42, 2688, 316208
Offset: 4
- M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.
Comments