cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Manfred Scheucher

Manfred Scheucher's wiki page.

Manfred Scheucher has authored 43 sequences. Here are the ten most recent ones:

A368761 Number of labeled split graphs on n vertices such that {1..k} is independent and {k+1..n} is a clique for some k in {0..n}.

Original entry on oeis.org

1, 2, 6, 24, 128, 928, 9280, 129152, 2515200, 68780544, 2647000064, 143580989440, 10988411686912, 1187350176604160, 181232621966082048, 39089521693818912768, 11916533065969825808384, 5135497592471003032846336, 3128995097443083790244380672, 2695613904312277811648715554816
Offset: 1

Author

Robert Lauff and Manfred Scheucher, Jan 05 2024

Keywords

Comments

Also the number of sign mappings X:([n] choose 2) -> {+,-} such that for any ordered 3-tuple abc we have X(ab)X(ac)X(bc) not in {++-,+--}.

Crossrefs

Cf. A048194.

Programs

  • Maple
    seq(1 + add((2^k-1)*2^((n-1-k)*k),k=1..n-1),n=1..20); # Georg Fischer_, May 28 2024
  • Python
    def f(n): return 1+sum((2**k-1)*2**((n-1-k)*k) for k in range(1,n))

Formula

a(n) = 1 + Sum_{k=1..n-1} (2^k-1)*2^((n-1-k)*k).

Extensions

a(20), a(21) joined by Georg Fischer, May 28 2024

A367448 Number of chordal graphs on n vertices with a fixed perfect elimination ordering (e.g., 1,2,3,...,n).

Original entry on oeis.org

1, 2, 7, 39, 324, 3839, 62973, 1402792, 41946319, 1673580047, 88922215948, 6297931501377, 596303138919753, 75787556639822258, 12991109500044250083, 3018313885461813882295, 955168488432838276254520, 413639698066068492610331231, 246197679553110860511406200613, 202212713843977008653180874488520
Offset: 1

Author

Manfred Scheucher and Robert Lauff, Jan 05 2024

Keywords

Comments

a(n) is the number of sign mappings X:([n] choose 2) -> {+,-} such that for any ordered 3-tuple a

Crossrefs

Cf. A048192.

Programs

  • PARI
    a(n)={
      local(M=Map(Mat([1, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(proc(p,m)=for(k=0, poldegree(p), acc(p + x*(1 + x)^k, polcoef(p,k)*m)));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], proc(src[i, 1], src[i, 2])));
      vecsum(Mat(M)[,2])
    } \\ Andrew Howroyd, Jan 06 2024

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 06 2024

A363586 a(n) is the number of mappings X:{{1..n} choose 3}->{+,-} such that X(a,b,c) = X(b,c,d) implies X(a,b,c) = X(a,b,d) = X(a,c,d) = X(b,c,d) for a < b < c < d.

Original entry on oeis.org

2, 10, 120, 3284, 199724, 26680618, 7782067930, 4936744315756
Offset: 3

Author

Manfred Scheucher, Jun 13 2023

Keywords

Extensions

a(9)-a(10) from Bert Dobbelaere, Jun 26 2023

A361564 Number of (n-3)-connected unlabeled n-node graphs.

Original entry on oeis.org

4, 6, 10, 17, 25, 39, 59, 87, 127, 186
Offset: 3

Author

Manfred Scheucher, Mar 15 2023

Keywords

References

  • M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.

Crossrefs

Cf. A259862.

Formula

a(n) = Sum_{j=1..3} A259862(n, n-j). - Andrew Howroyd, Mar 16 2023

A361578 Number of 5-connected polyhedra (or 5-connected simple planar graphs) with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 5, 8, 30, 85, 382, 1550, 7352
Offset: 12

Author

Manfred Scheucher, Mar 16 2023

Keywords

Comments

The icosahedral graph is the smallest 5-connected planar graph.

References

  • M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.

Crossrefs

Cf. A049373 (planar graphs with minimum degree~5) and A111358 (5-connected planar trianguations)

A361367 Number of weakly 2-connected simple digraphs with n unlabeled nodes.

Original entry on oeis.org

7, 129, 7447, 1399245, 853468061, 1774125803324, 12983268697759210, 340896057593147232397, 32512334188761655225275067, 11365639780174824680535568799361, 14668665138188644335253106665956458513, 70315069858161131939222463684374769308619684
Offset: 3

Author

Manfred Scheucher, Mar 09 2023

Keywords

References

  • M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.

Crossrefs

Directed variant of A002218.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    edges(v) = {2*sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)}
    graphsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 2^edges(p) * sMonomial(p)); s/n!}
    graphsSeries(n)={sum(k=0, n, graphsCycleIndex(k)*x^k) + O(x*x^n)}
    cycleIndexSeries(n)={my(g=graphsSeries(n), gc=sLog(g), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
    { my(N=15); Vec(-2*x^2 + OgfSeries(cycleIndexSeries(N))) } \\ Andrew Howroyd, Mar 09 2023

Extensions

Terms a(7) and beyond from Andrew Howroyd, Mar 09 2023

A361366 Number of unlabeled simple planar digraphs with n nodes.

Original entry on oeis.org

1, 3, 16, 218, 9026, 907123
Offset: 1

Author

Manfred Scheucher, Mar 09 2023

Keywords

References

  • M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.

Crossrefs

Directed variant of A005470.

A361368 Number of weakly connected simple planar digraphs with n unlabeled nodes.

Original entry on oeis.org

2, 13, 199, 8782, 897604
Offset: 2

Author

Manfred Scheucher, Mar 09 2023

Keywords

References

  • M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.

Crossrefs

Directed variant of A003094.

A361369 Number of weakly 2-connected simple planar digraphs with n unlabeled nodes.

Original entry on oeis.org

7, 129, 6865, 774052
Offset: 3

Author

Manfred Scheucher, Mar 09 2023

Keywords

References

  • M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.

Crossrefs

Directed variant of A021103.

A361371 Number of weakly 3-connected simple planar digraphs with n unlabeled nodes.

Original entry on oeis.org

42, 2688, 316208
Offset: 4

Author

Manfred Scheucher, Mar 09 2023

Keywords

References

  • M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.

Crossrefs

Directed variant of A000944.