cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 83 results. Next

A091579 Lengths of suffix blocks associated with A090822.

Original entry on oeis.org

1, 3, 1, 9, 4, 24, 1, 3, 1, 9, 4, 67, 1, 3, 1, 9, 4, 24, 1, 3, 1, 9, 4, 196, 3, 1, 9, 4, 24, 1, 3, 1, 9, 4, 68, 3, 1, 9, 4, 24, 1, 3, 1, 9, 4, 581, 3, 1, 9, 4, 25, 3, 1, 9, 4, 67, 1, 3, 1, 9, 4, 24, 1, 3, 1, 9, 4, 196, 3, 1, 9, 4, 24, 1, 3, 1, 9, 4, 68, 3, 1, 9, 4, 24, 1, 3, 1, 9, 4, 1731, 3, 1, 9, 4, 24
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2004

Keywords

Comments

The suffix blocks are what is called "glue string" in the paper by Gijswijt et al (2007). Roughly speaking, these are the terms >= 2 appended before the sequence (A090822) goes on with a(n+1) = 1 followed by all other initial terms a(2..n), cf. Example. The concatenation of these glue strings yields A091787. - M. F. Hasler, Aug 08 2018

Examples

			From _M. F. Hasler_, Aug 09 2018: (Start)
In sequence A090822, after the initial (1, 1) follows the first suffix block or glue string (2) of length a(1) = 1. This is followed by A090822(4) = 1 which indicates that the suffix block has ended, and the whole sequence A090822(1..3) up to and including this suffix block is repeated: A090822(4..6) = A090822(1..3).
Then A090822 goes on with (2, 2, 3, 1, ...), which tells that the second suffix block is A090822(7..9) = (2, 2, 3) of length a(2) = 3, whereafter the sequence starts over again: A090822(10..18) = A090822(1..9). (End)
		

Crossrefs

Cf. A090822, A091587 (records). For a smoothed version see A091839.
Cf. A091787 for the concatenation of the glue strings.

Programs

  • Python
    # compute curling number of L
    def curl(L):
        n = len(L)
        m = 1 #max nr. of repetitions at the end
        k = 1 #length of repeating block
        while(k*(m+1) <= n):
            good = True
            i = 1
            while(i <= k and good):
                for t in range(1, m+1):
                    if L[-i-t*k] != L[-i]:
                        good = False
                i = i+1
            if good:
                m = m+1
            else:
                k = k+1
        return m
    # compute lengths of first n glue strings
    def A091579_list(n):
        Promote = [1] #Keep track of promoted elements
        L = [2]
        while len(Promote) <= n:
            c = curl(L)
            if c < 2:
                Promote = Promote+[len(L)+1]
                c = 2
            L = L+[c]
        return [Promote[i+1]-Promote[i] for i in range(n)]
    # Dion Gijswijt, Oct 08 2015

A091411 Lengths of the B blocks in analysis of A090822.

Original entry on oeis.org

1, 3, 9, 19, 47, 98, 220, 441, 885, 1771, 3551, 7106, 14279, 28559, 57121, 114243, 228495, 456994, 914012, 1828025, 3656053, 7312107, 14624223, 29248450, 58497096, 116994195, 233988391, 467976791, 935953586, 1871907196
Offset: 1

Views

Author

N. J. A. Sloane, Mar 04 2004

Keywords

Comments

Also, values of len_y(n) when len_x(n) = 0 in A090822.

Crossrefs

Formula

a(1) = 1; for n > 1, a(n+1) = 2*a(n) + A091579(n).
This roughly doubles at each step and a(n) -> 1.743349432191828... * 2^n.

Extensions

14279 and 28559 from Allan Wilks, Mar 04 2004
Extended by N. J. A. Sloane, Mar 06 2004

A093955 A090822(n) - 1.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 2, 1, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, May 22 2004

Keywords

Comments

The purpose of A093955-A093958 is to compare A090822, A091787, A091799 and A091844 on the same "scale".
Sequence is unbounded. A 3 appears for the first time at n=220. A 4 appears for the first time at around n = 10^10^23.

Crossrefs

A157644 Indices of 3's in A090822.

Original entry on oeis.org

9, 18, 28, 37, 41, 45, 46, 56, 65, 75, 84, 88, 92, 93, 97, 107, 116, 126, 135, 139, 143, 144, 154, 163, 173, 182, 186, 190, 191, 195, 199, 203, 204, 208, 212, 216, 217, 218, 219, 229, 238, 248, 257, 261, 265, 266, 276, 285, 295, 304, 308, 312, 313, 317, 327, 336, 346, 355
Offset: 1

Views

Author

Paul Curtz, Mar 03 2009

Keywords

Comments

There is a group a(i+39) = a(i)+220 for i=1,..,39, then a group a(i+39)=a(i)+220 for i=40,...,78; these correlations become irregular later in the sequence.

Crossrefs

Programs

  • Mathematica
    Clear[a]; reversed = {a[2] = 1, a[1] = 1}; blocs[len_] := Module[{bloc1, par, pos}, bloc1 = Take[reversed, len]; par = Partition[reversed, len]; pos = Position[par, bloc_ /; bloc != bloc1, 1, 1]; If[pos == {}, Length[par], pos[[1, 1]] - 1]]; a[n_] := a[n] = Module[{an}, an = Table[{blocs[len], len}, {len, 1, Quotient[n - 1, 2]}] // Sort // Last // First; PrependTo[reversed, an]; an]; Position[Table[a[n], {n, 1, 355}], 3] // Flatten (* Jean-François Alcover, Mar 25 2013 *)

Extensions

Extended by R. J. Mathar, Mar 15 2009

A091409 a(n) is the smallest m such that A090822(m) = n.

Original entry on oeis.org

1, 3, 9, 220
Offset: 1

Views

Author

N. J. A. Sloane, based on a suggestion from Dion Gijswijt (gijswijt(AT)science.uva.nl), Mar 04 2004

Keywords

Crossrefs

Cf. A090822.

Formula

a(n) is about 2^(2^(3^(4^(5^...^(n-1))))).

Extensions

Sequence is infinite but next term, about 10^(10^23.09987) (see A091787), is too large to include.

A157107 Indices of 4's in A090822.

Original entry on oeis.org

220, 440, 661, 881, 1105, 1325, 1546, 1766, 1991, 2211, 2432, 2652, 2876, 3096, 3317, 3537, 3771, 3991, 4212, 4432, 4656, 4876, 5097, 5317, 5542, 5762, 5983, 6203, 6427, 6647, 6868, 7088, 7326, 7546, 7767, 7987, 8211, 8431, 8652, 8872, 9097, 9317, 9538
Offset: 1

Views

Author

Paul Curtz, Feb 23 2009

Keywords

Comments

Despite appearances, this is a highly irregular sequence. - N. J. A. Sloane
The first pair of consecutive 4's occurs at position 255895648634818208370064452304769558261700170817472823398081\
655524438021806620809813295008281436789493636145 [Gijswijt, 2016, page 12]. - Sergio Pimentel, Feb 21 2017
Comment from N. J. A. Sloane, Feb 28 2017: (Start)
Page 12 of Gijswijt (2016) states:
"In dat stuk vinden we 355 promoties en daarmee 355 stukken lijm van lengte 1, 3, 1, 9, 4, 24, 1, 3, ... Na 355 keer verdubbelen en lijm toevoegen vinden we uiteindelijk de eerste dubbele vier in A090822, en wel op positie
255.895.648.634.818.208.370.064.452.304.769.558.
261.700.170.817.472.823.398.081.655.524.438.021.
806.620.809.813.295.008.281.436.789.493.636.145".
A rough translation might be:
"... we find 355 promotions and thus 355 glue segments of lengths 1, 3, 1, 9, 4, 24, 1, 3, ...
We eventually find the first pair of consecutive 4's in A090822 at position
255,895,648,634,818,208,370,064,452,304,769,558,
261,700,170,817,472,823,398,081,655,524,438,021,
806,620,809,813,295,008,281,436,789,493,636,145."
Dion Gijswijt, Mar 01 2017 adds that the number mentioned is the position of the second 4 in the first occurrence of 4,4 in A090822. For the glue segments see A091579.
(End)

Crossrefs

Extensions

Edited by N. J. A. Sloane, Feb 24 2009
More terms from R. J. Mathar, Feb 24 2009

A094781 Array T(i,j), i>=1, j >= 1, forming a two-dimensional version of A090822, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 3, 3, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 2, 3, 1, 3, 2, 2, 3, 1, 3, 3, 3, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, 3, 1, 2, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 12 2004

Keywords

Comments

T(1,i) = T(i,1) = A090822(i). For i and j > 1, T(i,j) = max {k1, k2}, where k1 = curling number of (T(i,1), T(i,2)...,T(i,j-1)), k2 = curling number of (T(1,j), T(2,j)...,T(i-1,j)).
The curling number of a finite string S = (s(1),...,s(n)) is the largest integer k such that S can be written as xy^k for strings x and y (where y has positive length).

Examples

			Array begins:
1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822)
1 1 2 1 1 2 2 2 3 1 1 2 1 1 2 2 2 3 2 1 ... (A090822)
2 2 2 3 2 2 2 3 2 2 2 3 3 2 ... (A091787)
1 1 3 1 1 3 3 2 1 1 2 1 1 2 ... (A094782)
1 1 2 1 1 2 2 2 3 1 2 1 1 2 ... (A094839)
2 2 2 3 2 1 1 2 1 2 3 2 2 3 ...
2 2 2 3 2 1 1 3 1 2 ...
		

Crossrefs

A156799 Indices of 1's in Gijswijt's sequence A090822.

Original entry on oeis.org

1, 2, 4, 5, 10, 11, 13, 14, 20, 21, 23, 24, 29, 30, 32, 33, 48, 49, 51, 52, 57, 58, 60, 61, 67, 68, 70, 71, 76, 77, 79, 80, 99, 100, 102, 103, 108, 109, 111, 112, 118, 119, 121, 122, 127, 128, 130, 131, 146, 147, 149, 150, 155, 156, 158, 159, 165, 166, 168, 169, 174
Offset: 1

Views

Author

Paul Curtz, Feb 16 2009

Keywords

Extensions

Increased all values by 1, because A090822 has offset 1. R. J. Mathar, Feb 25 2009

A157041 Indices of 2's in A090822.

Original entry on oeis.org

3, 6, 7, 8, 12, 15, 16, 17, 19, 22, 25, 26, 27, 31, 34, 35, 36, 38, 39, 40, 42, 43, 44, 47, 50, 53, 54, 55, 59, 62, 63, 64, 66, 69, 72, 73, 74, 78, 81, 82, 83, 85, 86, 87, 89, 90, 91, 94, 95, 96, 98, 101, 104, 105, 106, 110, 113, 114, 115, 117, 120, 123, 124, 125, 129, 132
Offset: 1

Views

Author

Paul Curtz, Feb 22 2009

Keywords

Comments

Despite appearances, this is a highly irregular sequence. - N. J. A. Sloane

Extensions

Edited by N. J. A. Sloane, Feb 24 2009
Incremented all values by 1 to match the offset in A090822. R. J. Mathar, Feb 24 2009

A091410 Values of n such that len_x(n) = 0 in A090822.

Original entry on oeis.org

1, 2, 3, 7, 19, 39, 95, 197, 441, 883, 1771, 3543, 7103, 14213, 28559, 57119
Offset: 1

Views

Author

N. J. A. Sloane, Mar 04 2004

Keywords

Comments

So far this very nearly doubles at each step.

Crossrefs

Extensions

28559 and 57119 from Allan Wilks, Mar 04 2004
Showing 1-10 of 83 results. Next