A357067 Decimal expansion of the limit of A091411(k)/2^(k-1) as k goes to infinity.
3, 4, 8, 6, 6, 9, 8, 8, 6, 4, 3, 8, 3, 6, 5, 5, 9, 7, 0, 2, 3, 5, 8, 7, 2, 7, 0, 0, 7, 0, 2, 2, 2, 0, 6, 6, 7, 3, 3, 5, 4, 1, 3, 6, 6, 2
Offset: 1
Examples
3.48669886438365597023...
Links
- Levi van de Pol, The first occurrence of a number in Gijswijt's sequence, arXiv:2209.04657 [math.CO], 2022.
Programs
-
Python
import math from mpmath import * # warning: 0.1 and mpf(1/10) are incorrect. Use mpf(1)/mpf(10) mp.dps=60 def Cn(X): l=len(X) cn=1 for i in range(1, int(l/2)+1): j=i while(X[l-j-1]==X[l-j-1+i]): j=j+1 if j>=l: break candidate=int(j/i) if candidate>cn: cn=candidate return cn def epsilon(): A=[2] # level-2 Gijswijt sequence number=1 # number of S strings encountered position=0 # position of end of last S value=mpf(1) # approximation for epsilon1 for i in range(1,6000): k=Cn(A) A.append(max(2,k)) if k<2: value=value+mpf(i-position)/mpf(2**number) position=mpf(i) number+=1 return value print("epsilon_1: ",epsilon())
Formula
Equal to 1 + Sum_{k>=1} A091579(k)/2^k. Proved in Corollary 7.3 of the article "The first occurrence of a number in Gijswijt's sequence".
Comments