A384665 Smallest odd multiplier k such that k*n is abundant.
945, 9, 315, 3, 189, 3, 135, 3, 105, 3, 315, 1, 315, 3, 63, 3, 315, 1, 315, 1, 45, 3, 315, 1, 63, 3, 35, 3, 315, 1, 315, 3, 105, 3, 27, 1, 315, 3, 105, 1, 315, 1, 315, 3, 21, 3, 315, 1, 45, 3, 105, 3, 315, 1, 63, 1, 105, 3, 315, 1, 315, 3, 15, 3, 63, 1, 315, 3
Offset: 1
Keywords
Examples
a(5) = 189 because 189 is the smallest odd multiplier k such that 5*k is abundant (i.e., 5*189 = 945 which is abundant).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local k; for k from 1 by 2 do if numtheory:-sigma(n*k) > 2*n*k then return k fi od end proc: map(f, [$1..100]); # Robert Israel, Jun 09 2025
-
Mathematica
a[n_] := Module[{k = 1}, While[DivisorSigma[-1, k*n] <= 2, k += 2]; k]; Array[a, 100] (* Amiram Eldar, Jun 06 2025 *)
-
PARI
a(n) = my(k=1); while (sigma(k*n,-1)<=2, k+=2); k; \\ Michel Marcus, Jun 09 2025
Comments