cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Paul Curtz

Paul Curtz's wiki page.

Paul Curtz has authored 1710 sequences. Here are the ten most recent ones:

A383953 a(0) = 4, a(n) = 2*a(n-1) + (-1)^n.

Original entry on oeis.org

4, 7, 15, 29, 59, 117, 235, 469, 939, 1877, 3755, 7509, 15019, 30037, 60075, 120149, 240299, 480597, 961195, 1922389, 3844779, 7689557, 15379115, 30758229, 61516459, 123032917, 246065835, 492131669, 984263339, 1968526677, 3937053355, 7874106709, 15748213419, 31496426837
Offset: 0

Author

Paul Curtz, Aug 19 2025

Keywords

Crossrefs

Bisections give A199210 and A072261.

Programs

  • Mathematica
    a[n_] := (11*2^n + (-1)^n)/3; Array[a, 34, 0] (* Amiram Eldar, Aug 20 2025 *)

Formula

a(n) = (11*2^n + (-1)^n)/3.
a(n) = A340627(n+1)/2.
a(n) = 2*A052997(n) + 1 for n >= 1.
a(n) = a(n-4) + 55*2^(n-4) for n >= 4.
G.f.: (3*x + 4)/((x + 1)*(1 - 2*x)).
E.g.f: (11*exp(2*x) + exp(-x))/3.

A385178 Triangle T(n,k) read by rows in which the n-th diagonal lists the n-th differences of A001047, 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, 3, 4, 5, 7, 10, 14, 19, 15, 22, 32, 46, 65, 31, 46, 68, 100, 146, 211, 63, 94, 140, 208, 308, 454, 665, 127, 190, 284, 424, 632, 940, 1394, 2059, 255, 382, 572, 856, 1280, 1912, 2852, 4246, 6305, 511, 766, 1148, 1720, 2576, 3856, 5768, 8620, 12866, 19171
Offset: 0

Author

Paul Curtz, Jun 20 2025

Keywords

Examples

			Triangle begins:
    0;
    1,   1;
    3,   4,    5;
    7,  10,   14,   19;
   15,  22,   32,   46,   65;
   31,  46,   68,  100,  146,  211;
   63,  94,  140,  208,  308,  454,  665;
  127, 190,  284,  424,  632,  940, 1394, 2059;
  255, 382,  572,  856, 1280, 1912, 2852, 4246,  6305;
  511, 766, 1148, 1720, 2576, 3856, 5768, 8620, 12866, 19171;
  ...
		

Crossrefs

Columns k=0..2: A000225, A033484, A053209 (sans 1).
Diagonals: A001047, A027649, A053581 (sans 1), A291012 (sans 2).

Programs

  • Magma
    /* As triangle */ [[2^(n-k)*3^k - 2^k : k in [0..n]]: n in [0..9]]; // Vincenzo Librandi, Jun 27 2025
  • Maple
    T:= proc(n,k) option remember;
         `if`(n=k, 3^n-2^n, T(n, k+1)-T(n-1, k))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jun 24 2025
  • Mathematica
    t[n_, 0] := 3^n - 2^n; t[n_, k_] := t[n, k] = t[n + 1, k - 1] - t[n, k - 1]; Table[t[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 20 2025 *)

Formula

T(n,n) = 3^n - 2^n = A001047(n).
T(n,k) = T(n,k+1) - T(n-1,k) for 0 <= k < n.
T(n,k) = 2^(n-k)*3^k - 2^k = A036561(n,k) - A059268(n,k).
T(2n,n) = A248216(n+1).

A380384 a(0)=0, a(n) = 2*(a(n-1) + ceiling(n/2)) - 1 for n>0.

Original entry on oeis.org

0, 1, 3, 9, 21, 47, 99, 205, 417, 843, 1695, 3401, 6813, 13639, 27291, 54597, 109209, 218435, 436887, 873793, 1747605, 3495231, 6990483, 13980989, 27962001, 55924027, 111848079, 223696185, 447392397, 894784823, 1789569675, 3579139381, 7158278793, 14316557619
Offset: 0

Author

Paul Curtz, Jan 23 2025

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -1, -3, 2}, {0, 1, 3, 9}, 40] (* Amiram Eldar, Jan 24 2025 *)

Formula

G.f.: x*(x^2+1)/((x+1)*(1-2*x)*(x-1)^2).
a(n) = floor(2^n*5/3) - n - 1.
a(n) = A081254(n+1) - n - 1.
a(n) = a(n-4) + A250777(n-3).

A379530 a(n) = (A135318(3*n) + A135318(3*n+1) + A135318(3*n+2))/3.

Original entry on oeis.org

1, 3, 8, 23, 64, 185, 512, 1479, 4096, 11833, 32768, 94663, 262144, 757305, 2097152, 6058439, 16777216, 48467513, 134217728, 387740103, 1073741824, 3101920825, 8589934592, 24815366599, 68719476736, 198522932793, 549755813888, 1588183462343, 4398046511104, 12705467698745
Offset: 0

Author

Paul Curtz, Dec 24 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 7, 0, 8}, {1, 3, 8, 23}, 30] (* Amiram Eldar, Dec 31 2024 *)

Formula

a(n) = 7*a(n-2) + 8*a(n-4) with a(0)=1, a(1)=3, a(2)=8, a(3)=23 for n >= 4.
a(2*n) = A001018(n).
a(2*n+1) = A015565(n+1) + A013730(n).

A378120 a(n) = (A000217(n) + A005132(n))/2.

Original entry on oeis.org

0, 1, 3, 6, 6, 11, 17, 24, 24, 33, 33, 44, 44, 57, 57, 72, 72, 89, 107, 126, 126, 147, 147, 147, 171, 171, 197, 197, 225, 225, 255, 255, 287, 320, 354, 354, 390, 390, 390, 429, 429, 470, 470, 513, 513, 558, 558, 605, 605, 654, 654, 705, 705, 758, 758, 813, 813
Offset: 0

Author

Paul Curtz, Nov 17 2024

Keywords

Comments

a(n) is the sum of the up steps in the first n terms of Recaman's sequence A005132.

Crossrefs

Formula

a(n) = A005132(n) + A377748(n).

A377748 a(n) = (A000217(n) - A005132(n))/2.

Original entry on oeis.org

0, 0, 0, 0, 4, 4, 4, 4, 12, 12, 22, 22, 34, 34, 48, 48, 64, 64, 64, 64, 84, 84, 106, 129, 129, 154, 154, 181, 181, 210, 210, 241, 241, 241, 241, 276, 276, 313, 351, 351, 391, 391, 433, 433, 477, 477, 523, 523, 571, 571, 621, 621, 673, 673, 727, 727, 783, 783, 841, 841
Offset: 0

Author

Paul Curtz, Nov 06 2024

Keywords

Comments

a(n) is the sum of the down steps in the first n terms of Recamán's sequence A005132.

Examples

			a(0) = (0-0)/2, a(1) = (1-1)/2, a(2) = (3-3)/2, a(3) = (6-6)/2, a(4) = (10-2)/2, a(5) = (15-7)/2 ... .
		

Crossrefs

Formula

a(n) = Sum_{k=1..n} max(0, -A160356(k)).

A375966 Powers of 3 alternating with powers of 4.

Original entry on oeis.org

1, 1, 3, 4, 9, 16, 27, 64, 81, 256, 243, 1024, 729, 4096, 2187, 16384, 6561, 65536, 19683, 262144, 59049, 1048576, 177147, 4194304, 531441, 16777216, 1594323, 67108864, 4782969, 268435456, 14348907, 1073741824, 43046721, 4294967296, 129140163, 17179869184
Offset: 0

Author

Paul Curtz, Sep 04 2024

Keywords

Crossrefs

Cf. A000244 and A000302 interleaved.

Programs

  • Mathematica
    seq[len_] := Module[{m = Ceiling[len/2] - 1}, Riffle @@ Map[#^Range[0, m] &, {3, 4}]]; seq[36] (* Amiram Eldar, Sep 05 2024 *)
  • Python
    def A375966(n): return 1<<(n^1) if n&1 else 3**(n>>1) # Chai Wah Wu, Sep 24 2024

Formula

a(n) = 7*a(n-2) - 12*a(n-4) for n >= 4.
From Stefano Spezia, Sep 06 2024: (Start)
G.f.: (1 + x - 4*x^2 - 3*x^3)/((1 - 2*x)*(1 + 2*x)*(1 - 3*x^2)).
a(n) = (4*3^(n/2)*A059841(n) - (-2)^n + 2^n)/4.
E.g.f.: cosh(sqrt(3)*x) + cosh(x)*sinh(x). (End)

A375476 a(3*n)=A001045(n+1), a(3*n+1)=A084214(n), a(3*n+2)=A000079(n) for n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 4, 5, 6, 8, 11, 14, 16, 21, 26, 32, 43, 54, 64, 85, 106, 128, 171, 214, 256, 341, 426, 512, 683, 854, 1024, 1365, 1706, 2048, 2731, 3414, 4096, 5461, 6826, 8192, 10923, 13654, 16384, 21845, 27306, 32768, 43691, 54614, 65536
Offset: 0

Author

Paul Curtz, Aug 18 2024

Keywords

Crossrefs

Formula

G.f. 1 + x - x^2*(1+x+x^2+x^3+2*x^4+3*x^5) / ( (1+x)*(2*x^3-1)*(x^2-x+1) ).

A374927 a(n) = A135318(n)^2.

Original entry on oeis.org

1, 1, 1, 4, 9, 16, 25, 64, 121, 256, 441, 1024, 1849, 4096, 7225, 16384, 29241, 65536, 116281, 262144, 466489, 1048576, 1863225, 4194304, 7458361, 16777216, 29822521, 67108864, 119311929, 268435456, 477204025, 1073741824, 1908903481, 4294967296, 7635439161
Offset: 0

Author

Paul Curtz, Jul 24 2024

Keywords

Comments

A374098 terms swapped by pairs.

Crossrefs

Formula

a(2*n) = A139818(n+1).
a(2*n+1) = 4^n = A000302(n).
a(n) = 3*a(n-2) +6*a(n-4) -8*a(n-6).

A374098 a(n) = A112387(n)^2.

Original entry on oeis.org

1, 1, 4, 1, 16, 9, 64, 25, 256, 121, 1024, 441, 4096, 1849, 16384, 7225, 65536, 29241, 262144, 116281, 1048576, 466489, 4194304, 1863225, 16777216, 7458361, 67108864, 29822521, 268435456, 119311929, 1073741824, 477204025, 4294967296, 1908903481, 17179869184
Offset: 0

Author

Paul Curtz, Jun 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 3, 0, 6, 0, -8}, {1, 1, 4, 1, 16, 9}, 35] (* Amiram Eldar, Jul 01 2024 *)

Formula

a(2*n) = A000302(n); a(2*n+1) = A139818(n+1).
(a(2*n) + a(2*n-1))^2 = A084175(n+1)^2 + 16*A003683(n)^2, for n >= 1. - Thomas Scheuerle, Jun 28 2024
G.f. ( 1+x+x^2-2*x^3-2*x^4 ) / ( (x-1)*(2*x+1)*(2*x-1)*(1+x)*(2*x^2+1) ). - R. J. Mathar, Aug 02 2024