cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Thomas Scheuerle

Thomas Scheuerle's wiki page.

Thomas Scheuerle has authored 153 sequences. Here are the ten most recent ones:

A382260 Decimal expansion of x, where x is the smallest number for which floor(x^(phi^k)) is prime for k > 0 where phi = (1+sqrt(5))/2, assuming that Oppermann's conjecture holds.

Original entry on oeis.org

1, 5, 8, 3, 1, 2, 0, 4, 0, 4, 8, 5, 8, 1, 0, 9, 2, 2, 1, 0, 3, 5, 9, 0, 5, 9, 7, 0, 7, 0, 0, 1, 3, 4, 5, 4, 0, 3, 1, 1, 0, 5, 4, 9, 6, 0, 6, 4, 1, 7, 9, 3, 7, 8, 6, 3, 7, 6, 2, 8, 2, 8, 8, 6, 1, 9, 2, 8, 9, 5, 8, 7, 1, 1, 5, 0, 0, 0, 8, 5, 2, 7, 4, 7, 4, 7, 2, 9, 7, 5, 7, 3, 7
Offset: 1

Author

Thomas Scheuerle, Mar 19 2025

Keywords

Comments

This constant can generate for all exponents k > 0 a prime number if the following conjecture is true: Let p be a prime > 2 and q = nexprime(p+1) then if there is always at least one prime inside the interval nextprime(p*q) to nextprime((p+1)*q)). But if this constant can generate prime numbers for all k, it is not directly a proof of this conjecture. If we would strengthen this further by omitting "nextprime" and allowing natural numbers for p and q, we will obtain essentially Oppermann's conjecture.

Examples

			1.5831204048581...
		

Crossrefs

Formula

floor(x^(phi^n)) = A382261(n) where x is this constant.

A382261 a(n) = floor(x^(phi^n)), where phi = (1+sqrt(5))/2 and x is the constant A382260.

Original entry on oeis.org

2, 3, 7, 23, 163, 3803, 620549, 2359981439, 1464484123012601, 3456155348019933976288373, 5061484633840283809323162088349619180781, 17493277186167814180104995425523045477935447066389138909089293633
Offset: 1

Author

Thomas Scheuerle, Mar 19 2025

Keywords

Comments

Conjecture: All terms are prime numbers. For details see A382260.

Crossrefs

Cf. A090253 ( similar growth ).

Formula

nextprime(a(n-2)*a(n-1)) <= a(n) < nextprime((a(n-2)+1)*a(n-1)).

A382182 Lexicographically earliest increasing sequence starting with a(0) = 1 such that the polynomial which interpolates the first k values has degree k-1 and only integer coefficients.

Original entry on oeis.org

1, 2, 5, 16, 17, 86, 1237, 1940, 25601, 617482, 1386821, 25329272, 815052625, 2379750686, 55319082197, 2225093600956, 7995962217857, 225701855249810, 10894058270134021, 46488524334434912, 1543800689908468241, 86934584995669200742, 429553964850178236245, 16404426130967383104356
Offset: 0

Author

Thomas Scheuerle, Mar 17 2025

Keywords

Comments

Inverse binomial transform gives the factorial numbers up to sign.

Examples

			The first 6 polynomials are:
 1 = {1} for x = {0}
 x + 1 = {1, 2} for x = {0, 1}
 x^2 + 1 = {1, 2} for x = {0, 1, 2}
 x^3 - 2*x^2 + 2*x + 1  = {1, 2, 5} for x = {0, 1, 2, 3}
-x^4 + 7*x^3 - 13*x^2 + 8*x + 1  = {1, 2, 5, 16} for x = {0, 1, 2, 3, 4}
 x^5 - 11*x^4 + 42*x^3 - 63*x^2 + 32*x + 1  = {1, 2, 5, 16, 17} for x = {0, 1, 2, 3, 4, 5}
.
		

Crossrefs

Programs

  • PARI
    a(n) = sum(m=1, n+1, binomial(n, m-1)*(m-1)!*(1-2*(m%3==2 && m>3)))

Formula

a(n) = Sum_{m=1..n+1} binomial(n, m-1)*(m-1)!*s(m), where s(m) = -1 if m > 3 and m == 2 (mod 3) in all other cases s(m) = 1.
If k = a(n) then k divides a(n+m*k) for some m.

A381932 Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*T(n, k)/A381931(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.

Original entry on oeis.org

1, 1, -1, 1, -5, 1, 1, -13, 1, -1, 1, -77, 89, -91, 11, 1, -29, 175, -149, 91, -1, 1, -223, 1501, -37, 391, -43, -11, 1, -481, 2821, -13943, 725, -2357, 17, 29, 1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493, 1, -4861, 89993, -933293, 399637, -1061231, 2035739, -8189, 4897, -2711
Offset: 1

Author

Thomas Scheuerle, Mar 12 2025

Keywords

Comments

The main entry for this sequence of fractions is in A381931.

Examples

			Triangle T(n, k) begins:
[1]  1;
[2]  1,    -1;
[3]  1,    -5,     1;
[4]  1,   -13,     1,     -1;
[5]  1,   -77,    89,    -91,    11;
[6]  1,   -29,   175,   -149,    91,     -1;
[7]  1,  -223,  1501,    -37,   391,    -43,   -11;
[8]  1,  -481,  2821, -13943,   725,  -2357,    17,   29;
[9]  1, -4609, 16099, -19481, 91313, -55649, 23137, 1727, 493;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
		

Crossrefs

Cf. A381931 (denominators).

Programs

  • PARI
    c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
    row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, numerator(polcoeff(p, n-k+1)));

Formula

Conjecture: abs(T(n, 2)) = A064169(n - 1).
T(n, n) = numerator(A180609(n)/(n!*(n+1)!)).

A381931 Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*A381932(n, k)/T(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.

Original entry on oeis.org

2, 4, 12, 8, 48, 48, 16, 144, 24, 180, 32, 1152, 1728, 5760, 8640, 64, 640, 3456, 5760, 17280, 6720, 128, 7680, 34560, 1152, 34560, 32256, 241920, 256, 26880, 82944, 414720, 41472, 580608, 107520, 1451520, 512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600
Offset: 1

Author

Thomas Scheuerle, Mar 10 2025

Keywords

Comments

This is the main entry for this sequence of fractions.
Convergence and analytic continuation of this series representation are interesting research topics with many unsolved problems and open questions.
Evaluating the polynomial of row n P(x) = Sum_{k=1..n} x^(n+1-k)*A381932(n, k)/T(n, k) gives A144150(n+1, x-1)/(n+1)!.

Examples

			Triangle T(n, k) begins:
[1]  2;
[2]  4,   12;
[3]  8,   48,     48;
[4]  16,  144,    24,     180;
[5]  32,  1152,   1728,   5760,   8640;
[6]  64,  640,    3456,   5760,   17280,   6720;
[7]  128, 7680,   34560,  1152,   34560,   32256,   241920;
[8]  256, 26880,  82944,  414720, 41472,   580608,  107520,   1451520;
[9]  512, 430080, 645120, 622080, 4147200, 6967296, 21772800, 87091200, 43545600;
.
F^{r}(x) = x
+ x^2*1/2*r
+ x^3*(1/4*r^2 - 1/12*r)
+ x^4*(1/8*r^3 - 5/48*r^2 + 1/48*r)
+ x^5*(1/16*r^4 - 13/144*r^3 + 1/24*r^2 - 1/180*r)
+ x^6*(1/32*r^5 - 77/1152*r^4 + 89/1728*r^3 - 91/5760*r^2 + 11/8640*r)
+ ... .
		

Crossrefs

Programs

  • PARI
    c(k, n) = {my(f=x); for(m=1, k, f=subst(f, x, exp(x)-1)); polcoeff(f+O(x^(n+1)), n)}
    row(n) = my(p=polinterpolate(vector(2*(n+1), k, k-1), vector(2*(n+1), k, c(k-1, n+1)))); vector(n, k, denominator(polcoeff(p, n-k+1)));

Formula

T(n, 1) = 2^n.
T(n, n) = denominator(A180609(n)/(n!*(n+1)!)).

A381670 The function A(x) = x+(1/2)*x^2-(1/16)*x^4... = Sum_{k >= 0} x^k*A381669(k)/a(k) satisfies the functional equation: x*(A(x)+1) = A(A(x)).

Original entry on oeis.org

1, 1, 2, 1, 16, 16, 64, 16, 1024, 1024, 4096, 2048, 32768, 32768, 131072, 16384, 4194304, 4194304, 16777216, 8388608, 134217728, 134217728, 536870912, 134217728, 8589934592, 8589934592, 34359738368, 17179869184, 274877906944, 274877906944, 1099511627776
Offset: 0

Author

Thomas Scheuerle, Mar 03 2025

Keywords

Comments

Conjecture: All terms are powers of two.

Crossrefs

Cf. A381669 ( numerator ).
Cf. A381666 ( A(x)+x = x*A(A(x)) ).
Cf. A030266 ( A(x)-x = x*A(A(x)) ).
Cf. A347080 ( A(x)-x = x*A(A(-x)) ).

Programs

  • PARI
    compose(v) = polcoeff(subst(Polrev(v),x,Polrev(v)),#v-1)
    optimize(v) = { my(r=1,z = v[#v],t = compose(concat(v,r))); while(t<>z, r = r+(z-t)/2; t = compose(concat(v,r)));concat(v,r) }
    listA(max_n) = { my(v=[0, 1], out=[1,1]); while(#v
    				

A381669 The function A(x) = x+(1/2)*x^2-(1/16)*x^4... = Sum_{k >= 0} x^k*a(k)/A381670(k) satisfies the functional equation: x*(A(x)+1) = A(A(x)).

Original entry on oeis.org

0, 1, 1, 0, -1, 1, -1, -1, 113, -19, -1049, 849, 10171, -67975, 183735, 143679, -81627111, -135422127, 3045667427, 341639611, -225862086367, 212228801943, 8911194501081, -5123304557653, -1496818714531027, 6387545555294289, 64005829810291411, -250179519280324047
Offset: 0

Author

Thomas Scheuerle, Mar 03 2025

Keywords

Crossrefs

Cf. A381670 ( denominators ).
Cf. A381666 ( A(x)+x = x*A(A(x)) ).
Cf. A030266 ( A(x)-x = x*A(A(x)) ).
Cf. A347080 ( A(x)-x = x*A(A(-x)) ).

Programs

  • PARI
    compose(v) = polcoeff(subst(Polrev(v),x,Polrev(v)),#v-1)
    optimize(v) = { my(r=1,z = v[#v],t = compose(concat(v,r))); while(t<>z, r = r+(z-t)/2; t = compose(concat(v,r)));concat(v,r) }
    listA(max_n) = { my(v=[0, 1], out=[0, 1]); while(#v
    				

A381666 The generating function A(x) satisfies the functional equation: A(x)+x = x*A(A(x)).

Original entry on oeis.org

0, -1, 1, 0, -2, 1, 10, -13, -70, 163, 585, -2162, -5361, 30588, 49870, -459125, -411370, 7257651, 1513653, -119997558, 56857538, 2062729507, -2444340720, -36662245639, 71849171621, 670108236318, -1904023701457, -12520858710212, 48731008916451, 237412587011506, -1237341547854760
Offset: 0

Author

Thomas Scheuerle, Mar 03 2025

Keywords

Comments

Shifts left under COMPOSE transform with itself.

Examples

			G.f.: A(x) = -x + x^2 - 2*x^4 + x^5 + 10*x^6 + ...
A(A(x)) = x - 2*x^3 + x^4 + 10*x^5 - 13*x^6 + ...
		

Crossrefs

Cf. A030266 ( A(x)-x = x*A(A(x)) ).
Cf. A347080 ( A(x)-x = x*A(A(-x)) ).

Programs

  • PARI
    a(n) = { my(A=-1+x); for(i=0, n, A=-1+x*A*subst(A, x, x*A+x*O(x^n))); if(n==0,0,polcoeff(A, n-1))}

Formula

Let a(n) = b(n, 1), with b(1, m) = -1 and b(0, m) = 0, then
b(n, m) = Sum_{k=0..n-1} (-1)^(n-1)*m*binomial(n + m - 1, k)/(n + m - 1) * b(n - k, k).

A381464 Lexicographically earliest positive integer sequence satisfying a(n) = a(a(n))/n.

Original entry on oeis.org

1, 3, 6, 5, 20, 18, 8, 56, 10, 90, 12, 132, 14, 182, 16, 240, 19, 108, 323, 100, 22, 462, 24, 552, 26, 650, 28, 756, 30, 870, 32, 992, 34, 1122, 36, 1260, 38, 1406, 40, 1560, 42, 1722, 44, 1892, 46, 2070, 48, 2256, 50, 2450, 52, 2652, 54, 2862, 57, 448, 3135, 59, 3422, 61, 3660, 63, 3906, 65, 4160
Offset: 1

Author

Thomas Scheuerle, Feb 24 2025

Keywords

Comments

While extending the sequence at a(k) we will check if k equals a previous term in the sequence. If such a term a(m) = k is found a(k) is determined as a(k) = a(m)*m. If no previous term matches k we may choose a(k) = k+c with the least c such that c > 0 and k+c does not equal any previous term in the sequence. It is conjectured that this check is sufficient. Reasoning behind this conjecture:
The greatest common divisor of two consecutive Fibonacci numbers is 1, thus we know that (k-1)^F(m)*k^F(m+1) and (t-1)^F(n)*t^F(n+1) are all different for some m,n > 1 if k and t are chosen such that for m or n < 2 no solution for (k-1)^F(m)*k^F(m+1) = (t-1)^F(n)*t^F(n+1) exist, because this cannot be equal if (k-1)*k and (t-1)*t have different prime numbers as divisors and if the only difference is the exponent of the prime factors, then the distribution of these between (t-1) and t and thus their progression F(n) or F(n+1) is individually distinct. In this sequence we need also to consider the more general case (k-c)^F(m)*k^F(m+1) = (t-1)^F(n)*t^F(n+1) because sometimes we need to set a(k) = k+c. It is conjectured that in this case c is bounded to be < 3.

Crossrefs

Cf. A099267 ( a(n) = a(a(n))-n ).

Programs

  • PARI
    listA(max_n) = {my(v=[1, 0], t=1); for(k=2, max_n, if(v[k]==0, t=1; if(k+t<#v, while(v[k+t]>0, t++)); v[k]=k+t); v=concat(v, vector(max(0, v[k]+1-#v))); if(v[v[k]]>0, print("The conjecture that a single forward check is sufficient failed at:", k)); v[v[k]]=k*v[k]); v[1..max_n]}

Formula

Let b(n, m) be m times recursion into a(n), for example b(3, 2) = a(a(3)).
b(3, m) = A000304(m+1) for m > 0.
b(n, m+2) = b(n, m)*b(n, m+1).
b(5, m) = 4^F(m)*5^F(m+1), where F(m) = A000045(m).
b(k, m) = (k-1)^F(m)*k^F(m+1), for all k where k+1 = a(k).

A381003 Lexicographically earliest sequence with a(0) = 0 and a(n) = a(n + a(n)) - a(n - a(n)) > 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 4, 1, 5, 6, 5, 1, 6, 8, 1, 9, 1, 10, 10, 1, 11, 12, 1, 13, 13, 1, 14, 11, 15, 1, 16, 17, 1, 18, 5, 7, 18, 14, 12, 6, 20, 3, 22, 23, 15, 24, 17, 1, 18, 3, 26, 27, 20, 2, 28, 29, 1, 30, 4, 16, 31, 1, 32, 18, 33, 10, 34, 1, 35, 36, 36, 2, 21, 38
Offset: 0

Author

Thomas Scheuerle, Feb 11 2025

Keywords

Comments

A trivial but not lexicographically earliest solution for this problem is given by a(m) = ceiling(m/2) (A110654).
We assume a(<0) = 0 in this definition but conjecture that a(n) < n for n > 1.
If we iterate recursively k_{n+1} = a(k_{n})+k_{n} starting with k{0}=2, then we will observe a monotone increasing trajectory. An interesting consequence of the existence of this sequence is that if we start a trajectory at some k{m} > 2, such a trajectory would in the majority of cases ( or in all such cases? ) merge into the trajectory which is starting at 2.

Examples

			a(10) = 5 = a(10 + 5) - a(10 - 5) = 8 - 3.
		

Crossrefs

Cf. A110654.

Formula

a(a(n) + n) >= a(n).