cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381669 The function A(x) = x+(1/2)*x^2-(1/16)*x^4... = Sum_{k >= 0} x^k*a(k)/A381670(k) satisfies the functional equation: x*(A(x)+1) = A(A(x)).

Original entry on oeis.org

0, 1, 1, 0, -1, 1, -1, -1, 113, -19, -1049, 849, 10171, -67975, 183735, 143679, -81627111, -135422127, 3045667427, 341639611, -225862086367, 212228801943, 8911194501081, -5123304557653, -1496818714531027, 6387545555294289, 64005829810291411, -250179519280324047
Offset: 0

Views

Author

Thomas Scheuerle, Mar 03 2025

Keywords

Crossrefs

Cf. A381670 ( denominators ).
Cf. A381666 ( A(x)+x = x*A(A(x)) ).
Cf. A030266 ( A(x)-x = x*A(A(x)) ).
Cf. A347080 ( A(x)-x = x*A(A(-x)) ).

Programs

  • PARI
    compose(v) = polcoeff(subst(Polrev(v),x,Polrev(v)),#v-1)
    optimize(v) = { my(r=1,z = v[#v],t = compose(concat(v,r))); while(t<>z, r = r+(z-t)/2; t = compose(concat(v,r)));concat(v,r) }
    listA(max_n) = { my(v=[0, 1], out=[0, 1]); while(#v
    				

A381670 The function A(x) = x+(1/2)*x^2-(1/16)*x^4... = Sum_{k >= 0} x^k*A381669(k)/a(k) satisfies the functional equation: x*(A(x)+1) = A(A(x)).

Original entry on oeis.org

1, 1, 2, 1, 16, 16, 64, 16, 1024, 1024, 4096, 2048, 32768, 32768, 131072, 16384, 4194304, 4194304, 16777216, 8388608, 134217728, 134217728, 536870912, 134217728, 8589934592, 8589934592, 34359738368, 17179869184, 274877906944, 274877906944, 1099511627776
Offset: 0

Views

Author

Thomas Scheuerle, Mar 03 2025

Keywords

Comments

Conjecture: All terms are powers of two.

Crossrefs

Cf. A381669 ( numerator ).
Cf. A381666 ( A(x)+x = x*A(A(x)) ).
Cf. A030266 ( A(x)-x = x*A(A(x)) ).
Cf. A347080 ( A(x)-x = x*A(A(-x)) ).

Programs

  • PARI
    compose(v) = polcoeff(subst(Polrev(v),x,Polrev(v)),#v-1)
    optimize(v) = { my(r=1,z = v[#v],t = compose(concat(v,r))); while(t<>z, r = r+(z-t)/2; t = compose(concat(v,r)));concat(v,r) }
    listA(max_n) = { my(v=[0, 1], out=[1,1]); while(#v
    				
Showing 1-2 of 2 results.