cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381669 The function A(x) = x+(1/2)*x^2-(1/16)*x^4... = Sum_{k >= 0} x^k*a(k)/A381670(k) satisfies the functional equation: x*(A(x)+1) = A(A(x)).

Original entry on oeis.org

0, 1, 1, 0, -1, 1, -1, -1, 113, -19, -1049, 849, 10171, -67975, 183735, 143679, -81627111, -135422127, 3045667427, 341639611, -225862086367, 212228801943, 8911194501081, -5123304557653, -1496818714531027, 6387545555294289, 64005829810291411, -250179519280324047
Offset: 0

Views

Author

Thomas Scheuerle, Mar 03 2025

Keywords

Crossrefs

Cf. A381670 ( denominators ).
Cf. A381666 ( A(x)+x = x*A(A(x)) ).
Cf. A030266 ( A(x)-x = x*A(A(x)) ).
Cf. A347080 ( A(x)-x = x*A(A(-x)) ).

Programs

  • PARI
    compose(v) = polcoeff(subst(Polrev(v),x,Polrev(v)),#v-1)
    optimize(v) = { my(r=1,z = v[#v],t = compose(concat(v,r))); while(t<>z, r = r+(z-t)/2; t = compose(concat(v,r)));concat(v,r) }
    listA(max_n) = { my(v=[0, 1], out=[0, 1]); while(#v
    				

A381666 The generating function A(x) satisfies the functional equation: A(x)+x = x*A(A(x)).

Original entry on oeis.org

0, -1, 1, 0, -2, 1, 10, -13, -70, 163, 585, -2162, -5361, 30588, 49870, -459125, -411370, 7257651, 1513653, -119997558, 56857538, 2062729507, -2444340720, -36662245639, 71849171621, 670108236318, -1904023701457, -12520858710212, 48731008916451, 237412587011506, -1237341547854760
Offset: 0

Views

Author

Thomas Scheuerle, Mar 03 2025

Keywords

Comments

Shifts left under COMPOSE transform with itself.

Examples

			G.f.: A(x) = -x + x^2 - 2*x^4 + x^5 + 10*x^6 + ...
A(A(x)) = x - 2*x^3 + x^4 + 10*x^5 - 13*x^6 + ...
		

Crossrefs

Cf. A030266 ( A(x)-x = x*A(A(x)) ).
Cf. A347080 ( A(x)-x = x*A(A(-x)) ).

Programs

  • PARI
    a(n) = { my(A=-1+x); for(i=0, n, A=-1+x*A*subst(A, x, x*A+x*O(x^n))); if(n==0,0,polcoeff(A, n-1))}

Formula

Let a(n) = b(n, 1), with b(1, m) = -1 and b(0, m) = 0, then
b(n, m) = Sum_{k=0..n-1} (-1)^(n-1)*m*binomial(n + m - 1, k)/(n + m - 1) * b(n - k, k).
Showing 1-2 of 2 results.