cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Allan Wilks

Allan Wilks's wiki page.

Allan Wilks has authored 13 sequences. Here are the ten most recent ones:

A217943 Triangle read by rows: T(n,k) = 2*C(n-1,k)-C(n,k) for kA216955(n,k).

Original entry on oeis.org

2, -2, 0, 2, -2, 2, -2, 2, -2, 0, 0, 0, 2, -2, 4, -2, -2, 0, 2, -2, 0, 0, 0, 0, 0, 2, -2, 6, -6, 2, -2, 0, 0, 2, -2, 0, 6, -6, 0, 0, 0, 0, 2, -2, 10, -10, 0, 2, -2, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2, 20, -10, -4, -6, 2, -2, 0, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2
Offset: 2

Author

N. J. A. Sloane, following a suggestion from Allan Wilks, Oct 25 2012

Keywords

Examples

			Triangle begins:
[2, -2]
[0, 2, -2]
[2, -2, 2, -2]
[0, 0, 0, 2, -2]
[4, -2, -2, 0, 2, -2]
[0, 0, 0, 0, 0, 2, -2]
[6, -6, 2, -2, 0, 0, 2, -2]
[0, 6, -6, 0, 0, 0, 0, 2, -2]
[10, -10, 0, 2, -2, 0, 0, 0, 2, -2]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, -2]
[20, -10, -4, -6, 2, -2, 0, 0, 0, 0, 2, -2]
...
		

Crossrefs

Cf. A216955.
The nonzero entries in the first column form A216958.

A119632 Lengths of successive runs in A160357, where a run here means a string of alternating terms.

Original entry on oeis.org

1, 1, 3, 1, 11, 1, 4, 10, 1, 4, 28, 1, 10, 24, 1, 8, 1, 2, 1, 1, 4, 1, 9, 4, 1, 2, 36, 1, 12, 4, 1, 2, 1, 3, 28, 1, 10, 52, 1, 18, 1, 32, 1, 12, 15, 38, 1, 14, 32, 1, 12, 1, 44, 1, 16, 1, 148, 1, 50, 7, 22, 1, 8, 3, 4, 1, 2, 70, 1, 24, 1, 114, 1, 42, 1, 200, 1, 68, 6, 1, 2, 13
Offset: 1

Author

N. J. A. Sloane and Allan Wilks, Jun 10 2006

Keywords

Comments

Gives a highly compressed version of A005132.
The encoding of Recamán's sequence a(n) = A005132 using A119632 is easy - A119632 counts runs of alternating i(n)'s, where i(n) = (a(n)-a(n-1))/n = A160357(n).
Note that i(n) is always +1 or -1. Each run ends when i(n) = i(n+1).
Here is pseudo-code to reconstruct Recamán's sequence from A119632, which we will call I(n):
a(0) = 0
n = 1
i = 1
for k = 1..oo {
for j = 1..I(k) {
a(n) = a(n-1) + n*i
n = n+1
i = -i
}
i = -i
}
The gzipped file attached to A119632 represents the first 1470117206801829 terms of A005132. The longest run of alternating i(n)'s (maximal value found so far in A119632) is 232144588914. There are 64094657 runs encoded in the gzipped file.

Examples

			A160357 begins 1, 1; 1; -1, 1, 1; 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1; 1; -1, 1, -1, -1; 1, -1, 1, -1, 1, -1, 1, -1, 1, 1; 1; ..., where semicolons demark the successive runs.
		

Crossrefs

Extensions

Entry expanded by N. J. A. Sloane, Jul 15 2011

A065051 Let R(n) = n-th term of Recamán's sequence A005132; write R(n) = q*n + r with 0 <= r < n; sequence gives values of q.

Original entry on oeis.org

1, 1, 2, 0, 1, 2, 2, 1, 2, 1, 2, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 1

Author

Allan Wilks, Nov 06 2001

Keywords

Crossrefs

A065052 Let R(n) = n-th term of Recamán's sequence A005132; write R(n) = q*n + r with 0 <= r < n; sequence gives values of r.

Original entry on oeis.org

0, 1, 0, 2, 2, 1, 6, 4, 3, 1, 0, 10, 10, 9, 9, 8, 8, 7, 5, 2, 0, 19, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 11, 8, 6, 3, 1, 0, 38, 38, 37, 37, 36, 36, 35, 35, 34, 34, 33, 33, 32, 32, 31, 31, 30, 30, 29, 29, 28, 28, 27, 27, 26, 26, 25, 23, 20, 18, 15, 13, 10, 8, 5, 3
Offset: 1

Author

Allan Wilks, Nov 06 2001

Keywords

Crossrefs

A065053 Lengths of intervals between special points in Recamán's sequence A005132.

Original entry on oeis.org

1, 2, 3, 5, 10, 18, 37, 58, 114, 205, 391, 676, 1232, 2293, 4272, 7906, 13998, 25850, 42670, 81952, 146562, 261677, 444906, 753699, 1437381, 2558667, 4427625, 8187574, 13749010, 25908081, 43712354, 71626690, 129494829, 208670472, 392475704, 706150114, 1178963385, 2121607974, 3505821957, 5391635001, 9198342183, 16482140162, 26365869602, 41224268971, 81392278953, 136903510922, 210381061873, 336712115872, 532252635160, 998243799920, 1480053999356, 2400149352850, 3842190007803, 6040948051078, 9569679848801, 15070952302611, 23821706586022, 37852375185843, 57407444706709, 90871005894367, 143419003461175, 205641408919347, 339635878467789, 530661445779104
Offset: 1

Author

Allan Wilks, Nov 06 2001

Keywords

Crossrefs

First differences of A064492.

A065038 Values of Recamán's sequence A005132 at start of n-th segment (see A064492).

Original entry on oeis.org

1, 3, 2, 20, 10, 41, 38, 75, 268, 247, 1361, 2533, 3041, 2751, 15135, 18635, 51668, 62443, 57070, 398963, 181693, 1313022, 2359729, 1034838, 5365613, 3225918, 17353757, 10212210, 73599139, 96446382, 58056874, 407076917, 520187758, 908672243, 2046244881, 2712110771, 6440748154, 11156601694, 14732275193, 8416580354, 41424646066, 23006557538, 78977395399, 65854567302, 107078836273, 188471115226, 650749252297, 1071511376043, 872467803893, 2809440878107, 2402964238973, 7766036476659, 18849502773536, 10125357598982, 32332611300121, 102943941995445, 163227751205887, 193885933162482, 307443058720011, 159888464280046, 250759470174413, 394178473635587, 599819882554934, 2818367283068173
Offset: 1

Author

Allan Wilks, Nov 06 2001

Keywords

A064970 a(1)=1; thereafter, values of n for which r(n)-r(n-1) and r(n-1)-r(n-2) have the same sign, where r(n) = A005132(n).

Original entry on oeis.org

1, 2, 3, 6, 7, 18, 19, 23, 33, 34, 38, 66, 67, 77, 101, 102, 110, 111, 113, 114, 115, 119, 120, 129, 133, 134, 136, 172, 173, 185, 189, 190, 192, 193, 196, 224, 225, 235, 287, 288, 306, 307, 339, 340, 352, 367, 405, 406, 420, 452, 453, 465, 466
Offset: 1

Author

Allan Wilks, Oct 30 2001

Keywords

Examples

			E.g., going from r(4)=2 to r(5)=7 to r(6)=13 we increase twice in a row, so 6 is a member. Going from r(21)=63 to r(22)=41 to r(23)=18 we decrease twice in a row, so 23 is a member.
		

Crossrefs

Cf. A005132.

Extensions

Better description from Dean Hickerson, Feb 15 2006

A042946 Frequency of occurrence of numbers appearing in A042944.

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 6, 8, 4, 4, 4, 4, 4, 4, 8, 8, 6, 8, 4, 4, 4, 8, 8, 8, 4, 8, 12, 2, 8, 8, 12, 8, 8, 4, 4, 4, 4, 12, 8, 4, 4, 10, 8, 8, 8, 4, 4, 4, 12, 8, 8, 8, 12, 12, 8, 8, 8, 12, 6, 8, 12, 8, 4, 12, 8, 12, 12, 8, 12, 16, 4, 4, 8, 12, 8, 6, 8, 12, 12, 4, 4, 8, 12, 8, 4
Offset: 0

Author

Keywords

Examples

			E.g. 35 occurs 6 times.
		

A045673 Curvatures in diagram constructed by inscribing 2 circles of curvature 0 and 1 inside circle of curvature 0, continuing indefinitely to inscribe circles wherever possible.

Original entry on oeis.org

0, 1, 4, 9, 12, 16, 24, 25, 28, 33, 36, 40, 49, 52, 57, 60, 64, 72, 73, 76, 81, 84, 88, 96, 97, 100, 105, 108, 112, 121, 124, 129, 136, 144, 145, 148, 153, 156, 160, 168, 169, 172, 177, 180, 184, 192, 193, 196, 201, 204, 216, 217, 220, 225, 228, 232
Offset: 0

Author

Keywords

Comments

Appears to be a superset of {A008784 - 1}. - Ralf Stephan, Jan 26 2005
See A189226 for additional comments, references, links, examples, and crossrefs. - Jonathan Sondow, Aug 24 2012

Crossrefs

A045679 Numbers congruent to 0,1,4,9 mod 12 missing from A045673 (conjectured to be finite).

Original entry on oeis.org

13, 21, 37, 45, 48, 61, 69, 85, 93, 109, 117, 120, 132, 133, 141, 157, 165, 181, 189, 205, 208, 213, 229, 237, 241, 252, 253, 261, 277, 285, 300, 301, 309, 325, 328, 333, 340, 349, 357, 360, 373, 381, 397, 405, 421, 429, 445, 453, 468, 469, 477
Offset: 1

Author

Keywords

Crossrefs

Extensions

Offset 1 and name corrected by Michel Marcus, Sep 13 2019