cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Thomas Ordowski

Thomas Ordowski's wiki page.

Thomas Ordowski has authored 288 sequences. Here are the ten most recent ones:

A387016 Permutation of the odd integers >= 3 formed by ordering them first by odd k >= 3 and then by integer m >= 1 in their unique representation (k - 2^m)*2^m + 1.

Original entry on oeis.org

3, 7, 5, 11, 13, 15, 21, 9, 19, 29, 25, 23, 37, 41, 27, 45, 57, 31, 53, 73, 17, 35, 61, 89, 49, 39, 69, 105, 81, 43, 77, 121, 113, 47, 85, 137, 145, 51, 93, 153, 177, 55, 101, 169, 209, 59, 109, 185, 241, 63, 117, 201, 273, 33, 67, 125, 217, 305, 97
Offset: 1

Author

Thomas Ordowski, Aug 13 2025

Keywords

Comments

A term t must have m = A007814(t-1), and k follows from that so that the representation is unique.
For given k, successive terms have m in the range 1 <= m <= floor(log_2(k)) and this regularity permits a(n) to be calculated from the index n.
The terms where m is the maximum for each k are A369901 (in order) and are a permutation of the Proth numbers A080075.

Crossrefs

Cf. A080075 (Proth numbers in ascending order), A369901 (permutation of Proth numbers).

Programs

  • Mathematica
    Table[(k - 2^m)*2^m + 1,{k, 3, 35, 2}, {m, 1, Log2[k-1]}] // Flatten (* Amiram Eldar, Aug 13 2025 *)

Formula

P(n,m) = (2n+1 - 2^m)*2^m + 1 = (2n+1)*2^m - 4^m + 1, where m > 0 with 2^m < 2n+1, for n > 0.

Extensions

More terms from Amiram Eldar, Aug 13 2025

A385959 a(0) = 1; a(n) = a(n-1)*(b(n)+1)/(b(n)-1), where b(n) = A385958(n) is the largest prime p such that a(n) is an integer.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 14, 15, 16, 18, 19, 38, 57, 76, 114, 115, 120, 121, 132, 135, 136, 138, 139, 278, 279, 310, 312, 314, 471, 628, 942, 1099, 2198, 2199, 2932, 4398, 5131, 10262, 10995, 10996, 16494, 19243, 38486, 41235, 41236, 41358, 41471, 41838, 41841, 46490, 55788, 55789, 111578, 167367, 168554, 252831, 252832, 252864
Offset: 0

Author

Thomas Ordowski, Jul 13 2025

Keywords

Comments

a(0) = 1; a(n) is the smallest k such that (k + a(n-1))/(k - a(n-1)) is a prime (A385958).
Note that a(n-1)+1 <= a(n) <= 2*a(n-1).

Crossrefs

Cf. A385958.

Formula

a(n) = Product_{k=1..n} (b(k)+1)/(b(k)-1), where b(n) = A385958(n).
a(n) = (1+t(n))/(1-t(n)) with t(n) = tanh(Sum_{k=1..n} arctanh(1/b(k))).

Extensions

More terms from Morné Louw and Martin Fuller, Jul 15 2025

A385958 a(n) is the largest prime p such that b(n) = b(n-1)*(p+1)/(p-1) is an integer (A385959), where b(0) = 1.

Original entry on oeis.org

3, 5, 7, 5, 13, 3, 29, 31, 17, 37, 3, 5, 7, 5, 229, 47, 241, 23, 89, 271, 137, 277, 3, 557, 19, 311, 313, 5, 7, 5, 13, 3, 4397, 7, 5, 13, 3, 29, 21991, 5, 13, 3, 29, 82471, 677, 733, 227, 27893, 19, 11, 111577, 3, 5, 283, 5, 505663, 15803
Offset: 1

Author

Thomas Ordowski, Jul 13 2025

Keywords

Comments

a(n) = (b(n)+b(n-1))/(b(n)-b(n-1)), where b(n) = A385959(n) is the smallest k such that a(n) is a prime, where b(0) = 1.
a(n) is the largest prime p such that p-1 divides 2*b(n-1).
Note that 3 <= a(n) <= 2*b(n-1)+1.
Does this sequence contain all odd primes?

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    default(factor_add_primes, 1);
    {
    my(a,b=1);
    for(n=1,100,
      removeprimes(select(p->b%p, addprimes()));
      fordiv(2*b, d, a=2*b/d+1; if(isprime(a),break));
      b+=b*2/(a-1);
      print1(a, ", ");
    );
    } \\ Martin Fuller, Jul 16 2025

Formula

a(n) = A073409(b(n-1)), where b(n) = A385959(n) = Product_{k=1..n} (a(k)+1)/(a(k)-1).
Also tanh(Sum_{k=1..n} arctanh(1/a(k))) = (b(n)-1)/(b(n)+1).

Extensions

More terms from Morné Louw and Martin Fuller, Jul 15 2025

A386311 a(1) = 2, a(n+1) is the largest prime p such that b(n+1) = b(n)*(p + a(n))/(p - a(n)) is a positive integer, where b(1) = 1.

Original entry on oeis.org

2, 3, 13, 29, 71, 73, 3673, 3677, 1970327, 8879341, 30578677
Offset: 1

Author

Thomas Ordowski, Jul 18 2025

Keywords

Comments

This sequence is finite and full.
Note that a(n) < a(n+1) <= 2*b(n) + a(n).
b(1) = 1, b(n+1) is the smallest k such that a(n+1) = a(n)*(k + b(n))/(k - b(n)) is a prime, where a(1) = 2.
b(n) = 1, 5, 8, 21, 50, 3600, 3746, 6883275, 6909014, 10849668, and 19729009.
Conjecture: a'(n) = prime(n) for "the smallest prime p" and b'(n) = A352743(n-1) for "the largest k".
If a(n+1) <= 2*b(n) + a(n), then a(11) = 30578677 is the last term. - M. F. Hasler, Jul 19 2025

Crossrefs

Cf. A000040, A352743 (see author's conjecture).

Programs

  • PARI
    {a=List(2); b=List(1); for(n=1,oo, print1(a[n]", "); my(an=a[n], bn=b[n], p=precprime(2*bn+an)); iferr(while(bn*(p+an)%(p-an), p=precprime(p-1)), E, break); listput(a, p); listput(b, bn*(p+an)\(p-an))); print("that's all."); a=Vec(a)} \\ M. F. Hasler, Jul 19 2025

Formula

Product_{k=1..n} (a(k+1) + a(k))/(a(k+1) - a(k)) = b(n+1).
a(n+1)/a(n) = (b(n+1) + b(n))/(b(n+1) - b(n)).
b(n+1)/b(n) = (a(n+1) + a(n))/(a(n+1) - a(n)).

Extensions

a(7)-a(10) from M. F. Hasler, Jul 18 2025
a(11) = 2*b(10)+a(10) from Thomas Ordowski, Jul 19 2025

A384438 Composite numbers k such that ((2^k+1)/3)^k == 1 (mod k^2).

Original entry on oeis.org

341, 1105, 1387, 1729, 1771, 2047, 2465, 2485, 2701, 2821, 3277, 3445, 4033, 4369, 4681, 5185, 5461, 6601, 7957, 8321, 8911, 9361, 10261, 10585, 11305, 11713, 11891, 13741, 13747, 13981, 14491, 15709, 15841, 16105, 16705, 18145, 18721, 19951, 23377, 28441, 29341
Offset: 1

Author

Thomas Ordowski, May 29 2025

Keywords

Comments

If p > 3 is prime, then ((2^p+1)/3)^p == 1 (mod p^2).
Fermat pseudoprimes to base 2 not divisible by 3 (A066488) are a proper subsequence.
The terms k that are not 2^(k-1) == 1 (mod k) are 1771, 2485, 3445, 5185, 9361, ...

Crossrefs

Cf. A001567, A066488 (subsequence), A384148.

Programs

  • PARI
    isok(k) = (k>1) && (k%2) && !isprime(k) && (Mod((2^k+1)/3, k^2)^k == 1); \\ Michel Marcus, May 29 2025

Extensions

a(18)-a(41) from Jinyuan Wang, May 29 2025

A384456 Positive integers k such that (2^k - 1)^k + 2 is prime.

Original entry on oeis.org

1, 2, 4, 8, 16, 40
Offset: 1

Author

Thomas Ordowski, May 30 2025

Keywords

Comments

If it exists, a(7) > 800. - Hugo Pfoertner, Jun 03 2025

Crossrefs

Cf. A019434.

Programs

  • Mathematica
    Select[Range[100],PrimeQ[(2^#-1)^#+2] &] (* Stefano Spezia, Jun 01 2025 *)
  • PARI
    isok(k) = ispseudoprime((2^k - 1)^k + 2); \\ Michel Marcus, May 30 2025

A384148 Numbers k such that (2^k-1)^k == 1 (mod (2^k+1)*k^2) and 2^(k-1) != 1 (mod k).

Original entry on oeis.org

30457, 33865, 80185, 82621, 86785, 104845, 212401, 250705
Offset: 1

Author

Thomas Ordowski, May 20 2025

Keywords

Comments

If p > 3 is prime, then (2^p-1)^p == 1 (mod (2^p+1)*p^2).
Generally, if m is not divisible by 3 and 2^(m-1) == 1 (mod m), then (2^m-1)^m == 1 (mod (2^m+1)*m^2).
However, there are composite numbers satisfying this congruence that are not Fermat pseudoprimes to base 2. These exceptions constitute this sequence.

Crossrefs

Cf. A001567, A066488 (Fermat pseudoprimes to base 2 that are not divisible by 3).

Programs

  • PARI
    isok(k) = if (!isprime(k) && (Mod(2, k)^(k-1) != 1), Mod((2^k-1),(2^k+1)*k^2)^k == 1); \\ Michel Marcus, May 20 2025

Extensions

a(3)-a(6) from Michel Marcus, May 21 2025
a(7)-a(8) from Michael S. Branicky, May 28 2025

A383431 a(n) is the denominator of tanh(Sum_{k=1..n-1} artanh(k/n)), where artanh is the inverse hyperbolic tangent function.

Original entry on oeis.org

1, 2, 11, 18, 127, 463, 1717, 3218, 24311, 92379, 352717, 1352079, 5200301, 20058301, 77558761, 150270098, 1166803111, 4537567651, 17672631901, 68923264411, 269128937221, 1052049481861, 4116715363801, 16123801841551, 63205303218877, 247959266474053, 973469712824057, 3824345300380221, 15033633249770521
Offset: 1

Author

Thomas Ordowski, Apr 27 2025

Keywords

Comments

a(2^m) is even for m > 0.

Examples

			Denominators of 0, 1/2, 9/11, 17/18, 125/127, 461/463, 1715/1717, 3217/3218, ...
		

Crossrefs

Cf. A001700, A382257 (numerators).

Formula

a(n) = (binomial(2n-1, n-1) + 1)/2 if n = 2^m or a(n) = binomial(2n-1, n-1) + 1 otherwise, because tanh(Sum_{k=1..n-1} artanh(k/n)) = (binomial(2n-1, n-1) - 1)/(binomial(2n-1, n-1) + 1) reduced.
a(n) = A382257(n) + 1 if n = 2^m or a(n) = A382257(n) + 2 otherwise.

A377026 Numbers k such that 2^(2^k+1) == -1 (mod k^2).

Original entry on oeis.org

1, 3, 9, 171, 3249, 97641, 1855179, 29884473, 55753011, 567804987, 892145817, 1059307209
Offset: 1

Author

Thomas Ordowski, Oct 13 2024

Keywords

Comments

It seems that these are cubefree terms of A006521.

Crossrefs

Subsequence of A006521.

A376473 Numbers k such that 2^(2^(k-1)-1) == 1 (mod k^2) and 2^(k-1) =/= 1 (mod k).

Original entry on oeis.org

951481, 2215441, 28758601, 81844921, 1221936841, 10370479321, 16287076081, 26946809137, 33663998161, 35094800881, 134619011281, 188455112353, 299226038833, 314240366881, 383116075201, 594981050401, 1230227375833, 1572186445201, 2096189123113, 2377714473001
Offset: 1

Author

Thomas Ordowski, Sep 24 2024

Keywords

Comments

The terms k of A374953 for which A002326((k-1)/2) is odd.
Numbers k in A376253 that are not strong pseudoprimes to base 2.
Every term of this sequence must have a Wieferich prime factor (for example, 951481 = 271 * 3511). The Wieferich prime 1093 cannot divide such a number (see A374953).

Crossrefs

Subsequence of A374953.

Programs

  • Mathematica
    q[k_] := Module[{m = MultiplicativeOrder[2, k^2]}, PowerMod[2, k - 1, m] == 1]; Select[Range[1, 2300000, 2], PowerMod[2, # - 1, #] != 1 && q[#] &] (* Amiram Eldar, Sep 24 2024 *)
  • PARI
    is(k) = (k > 1) && k % 2 && !isprime(k) && Mod(2, k)^(k-1) != 1 && Mod(2, znorder(Mod(2, k^2)))^(k-1) == 1; \\ Amiram Eldar, Sep 24 2024
    
  • PARI
    list(lim)=my(v=List()); if(lim>3<<64, warning("May miss multiples of Wieferich primes > 2^64.")); forstep(n=10533,lim,7022, if(Mod(2, znorder(Mod(2, n^2)))^(n-1) == 1 && Mod(2,n)^n != 2, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Sep 24 2024

Extensions

More terms from Amiram Eldar, Sep 24 2024