A385958 a(n) is the largest prime p such that b(n) = b(n-1)*(p+1)/(p-1) is an integer (A385959), where b(0) = 1.
3, 5, 7, 5, 13, 3, 29, 31, 17, 37, 3, 5, 7, 5, 229, 47, 241, 23, 89, 271, 137, 277, 3, 557, 19, 311, 313, 5, 7, 5, 13, 3, 4397, 7, 5, 13, 3, 29, 21991, 5, 13, 3, 29, 82471, 677, 733, 227, 27893, 19, 11, 111577, 3, 5, 283, 5, 505663, 15803
Offset: 1
Links
- Martin Fuller, Table of n, a(n) for n = 1..3460
Programs
-
PARI
allocatemem(2^30); default(factor_add_primes, 1); { my(a,b=1); for(n=1,100, removeprimes(select(p->b%p, addprimes())); fordiv(2*b, d, a=2*b/d+1; if(isprime(a),break)); b+=b*2/(a-1); print1(a, ", "); ); } \\ Martin Fuller, Jul 16 2025
Formula
Extensions
More terms from Morné Louw and Martin Fuller, Jul 15 2025
Comments