cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A382257 a(n) is the numerator of tanh(Sum_{k=1..n-1} artanh(k/n)), where artanh is the inverse hyperbolic tangent function.

Original entry on oeis.org

0, 1, 9, 17, 125, 461, 1715, 3217, 24309, 92377, 352715, 1352077, 5200299, 20058299, 77558759, 150270097, 1166803109, 4537567649, 17672631899, 68923264409, 269128937219, 1052049481859, 4116715363799, 16123801841549, 63205303218875, 247959266474051, 973469712824055, 3824345300380219, 15033633249770519
Offset: 1

Views

Author

M. F. Hasler, Apr 15 2025

Keywords

Comments

The value of tanh(...) is always a rational number thanks to the relation tanh(x+y) = (tanh x + tanh y)/(1 + (tanh x)*tanh y).
So actually the set of fractions {1/n, ..., (n-1)/n} is "summed up" using the operator x (+) y := (x + y)/(1 + x*y).
By Wolstenholme's theorem; if p > 3 is prime, then p^3 divides a(p). - Thomas Ordowski, Apr 27 2025

Examples

			For n=2, tanh(artanh(1/2)) = 1/2, so a(2) = numerator(1/2) = 1.
For n=3, tanh(artanh(1/3) + artanh(2/3)) = (1/3 + 2/3) / (1 + 1/3 * 2/3) = 9/11, so a(3) = 9.
Numerators of 0, 1/2, 9/11, 17/18, 125/127, 461/463, 1715/1717, 3217/3218, ...
		

Crossrefs

Cf. A001700, A010763, A034602, A383431 (denominators).

Programs

  • PARI
    apply( {A382257(n)=my(s=0); for(i=1, n-1, s=(s*n+i)/(n+s*i));numerator(s)}, [1..30])
  • Python
    from sympy import S,expand_trig as ET
    tanh,artanh = S("tanh, artanh")
    def A382257_test(n): # for illustration only -- slow for n >= 19
        n=S(n); return ET(tanh(sum(artanh(k/n) for k in range(1,n)))).numerator
    def A382257(n):
        s=0; i=S.One/n
        for k in range(1,n): s = (s + i*k)/(1 + s*k*i)
        return s.numerator
    
  • Python
    from functools import reduce
    from fractions import Fraction
    def A382257(n): return reduce(lambda x,y: Fraction(x+y,1+x*y),(Fraction(i,n) for i in range(1,n)),0).numerator # Chai Wah Wu, Apr 23 2025
    

Formula

a(n) = (binomial(2n-1, n-1) - 1)/2 if n = 2^m or a(n) = binomial(2n-1, n-1) - 1 = A010763(n-1) otherwise, since tanh(Sum_{k=1..n-1} artanh(k/n)) = (binomial(2n-1, n-1) - 1)/(binomial(2n-1, n-1) + 1) reduced. - Thomas Ordowski, Apr 27 2025
Showing 1-1 of 1 results.