A289206 Greedy strictly increasing sequence starting at a(1)=1 avoiding both arithmetic and geometric progressions of length 3.
1, 2, 5, 6, 12, 13, 15, 16, 32, 33, 35, 39, 40, 42, 56, 81, 84, 85, 88, 90, 93, 94, 108, 109, 113, 115, 116, 159, 189, 207, 208, 222, 223, 232, 235, 240, 243, 244, 249, 250, 252, 259, 267, 271, 289, 304, 314, 318, 325, 340, 342, 397, 504, 508, 511, 531, 549
Offset: 1
Keywords
Examples
5 is in the sequence because 1,2,5 is neither an arithmetic progression nor a geometric progression.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Math StackExchange, A sequence that avoids both arithmetic and geometric progression (2014)
Programs
-
PARI
{my(a=[1,2]); for(x=3,100, if(#select(r->#select(q->q==2*r,b)==0,b=vecsort(apply(r->x-r,a)))==#a && #select(r->#select(q->q==r^2,b)==0,b=vecsort(apply(r->x/r,a)))==#a,a=concat(a,x)));a }
-
PARI
first(n)=my(v=vector(n)); v[1]=1; for(k=2,n, my(avoid=List(),t,last=v[k-1]); for(i=2,k-1, for(j=1,i-1, t=2*v[i]-v[j]; if(t>last, listput(avoid, t)); if(denominator(t=v[i]^2/v[j])==1 && t>last, listput(avoid,t)))); avoid=Set(avoid); for(i=v[k-1]+1,v[k-1]+#avoid+1, if(!setsearch(avoid,i), v[k]=i; break))); v \\ Charles R Greathouse IV, Jun 29 2017
Formula
a(n) >= 3n/2 for n > 2.
Extensions
More terms from Alois P. Heinz, Jun 28 2017
Comments