Karl W. Heuer has authored 11 sequences. Here are the ten most recent ones:
A385861
Number of n X n yesnograms that can be solved uniquely.
Original entry on oeis.org
1, 2, 14, 368, 49578, 24177516, 46985524156
Offset: 0
a(2) = 14 because, of the 16 2 X 2 grids, 10/01 and 01/10 would have the same set of clues; the other 14 are solvable.
Cf.
A242876 (solvable n X n nonograms),
A384764 (solvable n X m nonograms),
A383345 (solvable n X 2 nonograms or yesnograms).
A385862
Number of n X m yesnograms that can be solved uniquely, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 14, 8, 1, 1, 16, 52, 52, 16, 1, 1, 32, 210, 368, 210, 32, 1, 1, 64, 816, 2992, 2992, 816, 64, 1, 1, 128, 3206, 23058, 49578, 23058, 3206, 128, 1, 1, 256, 12536, 179576, 775204, 775204, 179576, 12536, 256, 1, 1, 512, 48962, 1388978, 12129616, 24177516, 12129616, 1388978, 48962, 512, 1
Offset: 0
For the 3 X 4 grid shown below, the row clues (counting runs of 0s) and the column clues (counting runs of 1s) are sufficient to reconstruct the grid, so this is one of the 2992 solvable grids counted in A(3, 4).
| 1 3 1 2
----+--------
1 | 0 1 1 1
1 1 | 0 1 0 1
2 | 1 1 0 0
Top left corner of the array:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, 64, ...
1, 4, 14, 52, 210, 816, 3206, ...
1, 8, 52, 368, 2992, 23058, 179576, ...
1, 16, 210, 2992, 49578, 775204, 12129616, ...
1, 32, 816, 23058, 775204, 24177516, 754845831, ...
Cf.
A242876 (solvable n X n nonograms),
A384764 (solvable n X m nonograms),
A383345 (solvable n X 2 nonograms or yesnograms),
A385861 (solvable n X n yesnograms).
Original entry on oeis.org
7, 73, 773, 7523, 77323, 753773, 7732337, 77323733, 773337223, 7773337223, 77735235323, 777352335323, 7773232237523, 77733372233533, 777352353232333, 7773733335332333, 77737523727333737, 777733372232237537, 7777352335323753353, 77773733335332333773
Offset: 1
a(3) = 773 because 773 is the largest 3-digit prime that is a concatenation of a 1-digit prime and a 2-digit prime that is itself a concatenation of 1-digit primes.
Original entry on oeis.org
2, 23, 223, 2237, 23333, 223337, 2233373, 22323337, 222335353, 2232333533, 22323332323, 222335353337, 2223337223773, 22233372237737, 222322375373773, 2223223753737733, 22232232373337353, 222237322353237223, 2222327532332333737, 22223353533353323333
Offset: 1
a(3) = 223 because 223 is the smallest 3-digit prime that is a concatenation of a 1-digit prime and a 2-digit prime that is itself a concatenation of 1-digit primes.
A376433
Number of n-digit primes in A104179.
Original entry on oeis.org
4, 4, 8, 10, 17, 24, 46, 94, 139, 241, 416, 688, 1170, 1969, 3345, 5674, 9527, 16316, 27464, 46668, 78897, 134097, 226457, 381906, 645210, 1093472, 1843869, 3127129, 5278196
Offset: 1
a(3) = 8 because there are eight 3-digit primes {223, 233, 337, 353, 373, 523, 733, 773} that are concatenations of a 1-digit prime and a 2-digit prime that is itself a concatenation of 1-digit primes.
A353598
Rounded values of Fahrenheit temperatures for which the corresponding Celsius (Centigrade) temperature rounds to its digit reversal.
Original entry on oeis.org
61, 82, 4862, 5082, 7514, 96635, 9663413658635, 9610113281598335, 9610166586341898335, 48184011328159886762, 50815988671840113282, 75184011328159886714, 966341365863413658635, 48184016658634189886762, 50815983341365810113282, 75184016658634189886714, 966341898867184016658635
Offset: 1
61 is in the list because 60.98 F = 16.1 C and (61, 16) are reversals.
40 is not in the list because 04 is not a proper digit reversal.
A353597
Rounded values of Celsius (Centigrade) temperatures for which the corresponding Fahrenheit temperature rounds to its digit reversal.
Original entry on oeis.org
16, 28, 2684, 2805, 4157, 53669, 5368563143669, 5338951823110169, 5338981436856610169, 26768895182311048184, 28231104817688951805, 41768895182311048157, 536856314368563143669, 26768898143685661048184, 28231101856314338951805, 41768898143685661048157, 536856610481768898143669
Offset: 1
2684 is in the list because 2683.6 C = 4862.48 F and (2684, 4862) are reversals.
-
def rv(x, k):
y = 0
for i in range(k): x, y = x//10, y*10+x%10
return y
def fc(maxlen):
z, pp = 1, [[0]]*13
for k in range(1, (maxlen+3)//2):
z, od, ev = z*10, [], []
for h in range(13):
qq = []
for p in pp[h]:
for d in range(10):
if k == 1 and d == 0: continue
f0 = p + d*(z//10)
c0 = (154+h-5*f0)*(z//9)%z
c1, f1 = rv(f0, k), rv(c0, k)
if c1%10 == f1%10:
c, f = c1//10*z+c0, f1//10*z+f0
if 9*c+154+h == 5*f: od.append(c)
c, f = c1*z+c0, f1*z+f0
if 9*c+154+h == 5*f: ev.append(c)
if k < 3 or (9*(c1+2) >= 5*f1 and 5*(f1+1) >= 9*c1): qq.append(f0)
pp[h] = qq
for c in sorted(od): print(c)
for c in sorted(ev): print(c)
A268343
Hermit primes: primes which are not a nearest neighbor of another prime.
Original entry on oeis.org
23, 37, 53, 67, 89, 97, 113, 157, 173, 211, 233, 277, 293, 307, 317, 359, 389, 409, 449, 457, 467, 479, 509, 577, 607, 631, 653, 691, 719, 751, 839, 853, 863, 877, 887, 919, 929, 1039, 1069, 1087, 1201, 1223, 1237, 1283, 1297, 1307, 1327, 1381, 1423, 1439
Offset: 1
53 is in the list because the previous prime, 47, is closer to 43 than to 53, and the following prime, 59, is closer to 61 than to 53.
Cf.
A269734 (number of hermit primes <= prime(n)).
-
N:= 1000: # to get all terms <= N
pr:= select(isprime, [$2 .. nextprime(nextprime(N))]):
Np:= nops(pr):
ishermit:= Vector(Np,1):
d:= pr[3..Np] + pr[1..Np-2] - 2*pr[2..Np-1]:
for i from 1 to Np-2 do
if d[i] > 0 then ishermit[i]:= 0
elif d[i] < 0 then ishermit[i+2]:= 0
else ishermit[i]:= 0; ishermit[i+2]:= 0
fi
od:
subs(0=NULL, zip(`*`, pr[1..Np-2],convert(ishermit,list))); # Robert Israel, Mar 09 2016
-
Select[Prime@ Range@ 228, Function[n, AllTrue[{Subtract @@ Take[#, 2], Subtract @@ Reverse@ Take[#, -2]} &@ Differences[NextPrime[n, #] & /@ {-2, -1, 0, 1, 2}], # < 0 &]]] (* Michael De Vlieger, Feb 02 2016, Version 10 *)
-
A268343_list(LIM=1500)={my(d=vector(4),i,o,L=List());forprime(p=1,LIM,(d[i++%4+1]=-o+o=p)d[(i-3)%4+1]&&listput(L,p-d[i%4+1]-d[(i-1)%4+1]));Vec(L)} \\ M. F. Hasler, Mar 15 2016
-
is_A268343(n,p=precprime(n-1))={n-p>p-precprime(p-1)&&(p=nextprime(n+1))-n>nextprime(p+1)-p&&isprime(n)} \\ M. F. Hasler, Mar 15 2016
Deleted my incorrect conjecture about asymptotic behavior. -
N. J. A. Sloane, Mar 10 2016
A193163
Irregular table read by rows, in which row n lists the factorions in base n, for n >= 2.
Original entry on oeis.org
1, 2, 1, 2, 1, 2, 7, 1, 2, 49, 1, 2, 25, 26, 1, 2, 1, 2, 1, 2, 41282, 1, 2, 145, 40585, 1, 2, 26, 48, 40472, 1, 2, 1, 2, 519326767, 1, 2, 12973363226, 1, 2, 1441, 1442, 1, 2, 2615428934649, 1, 2, 40465, 43153254185213, 43153254226251, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 2
49 is in row 5 because 49 = 1! + 4! + 4! and is "144" in base 5.
The first few rows are:
1, 2 (binary)
1, 2 (ternary)
1, 2, 7 (quartal)
1, 2, 49 (quintal)
1, 2, 25, 26 (hexal)
1, 2 (heptal)
1, 2 (octal)
1, 2, 41282 (nonal)
1, 2, 145, 40585 (decimal)
1, 2, 26, 48, 40472 (undecimal)
1, 2 (duodecimal)
1, 2, 519326767, etc.
A152177
Smallest prime factor of G+n, where G is any sufficiently large power tower of 3, e.g., Graham's number.
Original entry on oeis.org
3, 2, 11, 2, 61094071, 2, 3, 2, 5, 2, 17, 2, 3, 2, 41, 2, 147331, 2, 3, 2, 19, 2, 7, 2, 3, 2, 101117, 2, 5, 2, 3, 2, 293, 2
Offset: 0
a(2) = 11 because 3^3^3^... + 2 = 0 (mod 11).
Comments