Bob Selcoe has authored 85 sequences. Here are the ten most recent ones:
A330885
Square array T(n,k) read by antidiagonals upwards: T(n,0)=1; T(n,1) = n+1; T(n,2) = 2n+1, T(n,k>2) = T(n,k-1) - T(n,k-2) - T(n,k-3).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, -1, 1, 4, 5, 0, -3, 1, 5, 7, 1, -5, -3, 1, 6, 9, 2, -7, -8, 1, 1, 7, 11, 3, -9, -13, -3, 7, 1, 8, 13, 4, -11, -18, -7, 10, 9, 1, 9, 15, 5, -13, -23, -11, 13, 21, 1, 1, 10, 17, 6, -15, -28, -15, 16, 33, 14, -15
Offset: 0
Array starts:
1 1 1 -1 -3 -3 1 7 9 1 -15 -25
1 2 3 0 -5 -8 -3 10 21 14 -17 -52
1 3 5 1 -7 -13 -7 13 33 27 -19 -79
1 4 7 2 -9 -18 -11 16 45 40 -21 -106
1 5 9 3 -11 -23 -15 19 57 53 -23 -133
1 6 11 4 -13 -28 -19 22 69 66 -25 -160
1 7 13 5 -15 -33 -23 25 81 79 -27 -187
-
T[n_, k_]:= T[n, k]= If[k<3, k*n+1, T[n, k-1] - T[n, k-2] - T[n, k-3]];
Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 26 2020 *)
A328037
Irregular triangle T(n,k) read by rows: "quotient trajectories" in reduced Collatz sequences; i.e., T(n,k) = q-value(A256598(n,k)) where q-value(z) = (z - A259663(m,j))/2^(m+j) and (m,j) is the unique pair such that z == A259663(m,j) (mod 2^(m+j)). (See Comments for definitions.)
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 2, 0, 0, 0, 1, 5, 0, 0, 2, 6, 20, 15, 5, 17, 3, 9, 29, 2, 8, 24, 74, 27, 5, 15, 47, 17, 53
Offset: 0
Triangle starts:
0;
0, 0, 0;
0, 0;
0, 0, 2, 0, 0, 0;
1, 0, 0, 2, 0, 0, 0;
0, 2, 0, 0, 0;
0, 0, 0;
0, 0, 0, 0, 0, 0;
2, 0, 0, 0;
0, 1, 0, 2, 0, 0, 0;
0, 0;
0, 0, 0, 0, 0;
3, 0, 1, 0, 2, 0, 0, 0;
...
n=13 starts with 27 = T"(2,2)_1 and takes 41 steps: 1, 5, 0, 0, 2, 6, 20, 15, 5, ..., 0, 0, 0.
Row n=12 maps to the reduced sequence n=12 in A256598: 25 -> 19 -> 29 -> 11 -> 17 -> 13 -> 5 -> 1, which is T"(2,1)_3 -> T"(3,2)_0 -> T"(3,1)_1 -> T"(2,2)_0 -> T"(2,1)_2 -> T"(3,1)_0 -> T"(4,1)_0 -> T"(2,1)_0.
-
Tdt(n, k) = if (n==2, if (k%2, 2^k-1, 3*2^k-1), if (n==3, if (k%2, 7*2^k-1, 5*2^k-1), mj = 2^(n-3) % 2^(n-2); mk = k % 2^(n-2); (2^k*3^(mj-mk) - 1) % 2^(n+k))); \\ A259663
qvalue(m) = {my(line = 2, i, md); while (1, i = line; for (j=1, line-1, md = Tdt(i, j); if (m % (2^(i+j)) == md % (2^(i+j)), return((m-md)/2^(i+j))); i--;); line ++;);}
row(n) = {my(oddn = 2*n+1, vl = List(oddn), x); while (oddn != 1, x = 3*oddn+1; oddn = x >> valuation(x, 2); listput(vl, oddn)); my(v = Vec(vl)); for (i=1, #v, v[i] = qvalue(v[i]);); v;} \\ A256598
tabf(nn) = {for (n=0, nn, my(rown = row(n)); for (k=1, #rown, print1(rown[k], ", ")); print;);} \\ Michel Marcus, Oct 04 2019
A327283
Irregular triangle T(n,k) read by rows: "residual summands" in reduced Collatz sequences (see Comments for definition and explanation).
Original entry on oeis.org
1, 1, 5, 1, 5, 19, 73, 347, 1, 7, 29, 103, 373, 1631, 1, 5, 23, 133, 1, 11, 1, 5, 19, 65, 451, 1, 7, 53, 1, 5, 31, 125, 503, 2533, 1, 1, 5, 19, 185, 1, 7, 29, 151, 581, 2255, 10861, 1, 5, 23, 85, 287, 925
Offset: 1
Triangle starts:
1;
1, 5;
1;
1, 5, 19, 73, 347;
1, 7, 29, 103, 373, 1631;
1, 5, 23, 133;
1, 11;
1, 5, 19, 65, 451;
1, 7, 53;
1, 5, 31, 125, 503, 2533;
1;
1, 5, 19, 185;
1, 7, 29, 151, 581, 2255, 10861;
...
T(5,4)=103 because R_9(4) = 13; the number of halving steps from R_9(0) to R_9(4) is 6, and 13 = (81*9 + 103)/64.
A308999
Irregular triangle T(n,k) read by rows: Lexicographically smallest marks on "perfect rulers" (as defined in A103294) of length n.
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 2, 4, 0, 1, 2, 5, 0, 1, 4, 6, 0, 1, 2, 3, 7, 0, 1, 2, 5, 8, 0, 1, 2, 6, 9, 0, 1, 2, 3, 6, 10, 0, 1, 2, 3, 7, 11, 0, 1, 2, 3, 8, 12, 0, 1, 2, 6, 10, 13, 0, 1, 2, 3, 4, 9, 14, 0, 1, 2, 3, 4, 10, 15, 0, 1, 2, 3, 8, 12, 16
Offset: 0
Triangle starts:
0;
0, 1;
0, 1, 2;
0, 1, 3;
0, 1, 2, 4;
0, 1, 2, 5;
0, 1, 4, 6;
0, 1, 2, 3, 7;
0, 1, 2, 5, 8;
0, 1, 2, 6, 9;
0, 1, 2, 3, 6, 10;
0, 1, 2, 3, 7, 11;
0, 1, 2, 3, 8, 12;
0, 1, 2, 6, 10, 13;
0, 1, 2, 3, 4, 9, 14;
0, 1, 2, 3, 4, 10, 15;
0, 1, 2, 3, 8, 12, 16;
-
def Partsum(T) :
return [add([T[j] for j in range(i)]) for i in (0..len(T))]
def Ruler(L, S) :
return map(Partsum, Compositions(L, length=S))
def isComplete(R) :
S = Set([])
L = len(R)-1
for i in range(L,0,-1) :
for j in (1..i) :
S = S.union(Set([R[i]-R[i-j]]))
return len(S) == R[L]
def CompleteRuler(L, S) :
return list(filter(isComplete, Ruler(L, S)))
def PerfectRulers(L) :
for i in (0..L) :
R = CompleteRuler(L, i)
if R: return R
return []
def A308999list(L):
for n in (0..L):
print(PerfectRulers(n)[-1])
A308999list(16) # Peter Luschny, Aug 21 2019
A316625
Terms in A259663, in ascending order.
Original entry on oeis.org
1, 3, 5, 7, 11, 13, 15, 19, 21, 23, 31, 35, 47, 53, 55, 63, 79, 85, 87, 95, 99, 127, 143, 151, 191, 213, 223, 227, 255, 271, 319, 341, 351, 383, 407, 483, 511, 575, 663, 739, 767, 783, 853, 863, 895, 1023, 1175, 1251, 1279, 1365, 1407, 1535, 1599, 1807, 1887, 2047
Offset: 1
k=5, i=1 -- terms are least residues of 3^j*2^(12-j)-1 mod 2^(17-j), 0 <= j < 12:
j=0: 4096-1 mod 131072 = 4095;
j=1: 3*2048-1 mod 65536 = 6143;
j=2: 9*1024-1 mod 32768 = 9215;
j=3: 27*512-1 mod 16384 = 13823;
j=4: 81*256-1 mod 8192 = 20735 mod 8192 == 4351;
j=5: 243*128-1 mod 4096 = 31103 mod 4096 == 2431;
j=6: 729*64-1 mod 2048 = 46655 mod 2048 == 1599;
j=7: 2187*32-1 mod 1024 = 69983 mod 1024 == 351;
j=8: 6561*16-1 mod 512 = 104975 mod 512 == 15;
j=9: 19683*8-1 mod 256 = 157463 mod 256 == 23;
j=10: 59049*4-1 mod 128 = 236195 mod 128 == 35;
j=11: 177147*2-1 mod 64 = 354293 mod 64 == 53.
Note: k=5, i=0 is equivalent to starting with j=0: 15 mod 512.
Original entry on oeis.org
29, 139, 3191, 15289, 350981, 1681651, 20344613659, 2237722536169, 5650248517599839, 1464318118372209903213451940281613111, 471219735266432821374794400248484805597413615642086220363989152195627985749609
Offset: 1
Cf.
A285992,
A299107,
A299109,
A088165,
A117522,
A299100,
A299101,
A113501,
A269253,
A269254,
A298675,
A298677,
A298878,
A299045,
A299071.
A299107
Probable primes in sequence {s_k(4)}, where s_k(4) = 4*s_{k-1}(4) - s_{k-2}(4), k >= 2, s_0(4) = 1, s_1(4) = 5.
Original entry on oeis.org
5, 19, 71, 3691, 191861, 138907099, 26947261171, 436315574686414344004975231616076636245689199862837798457639364993981991744926792179
Offset: 1
Cf.
A285992,
A299107,
A299109,
A088165,
A117522,
A299100,
A299101,
A113501,
A269253,
A298675,
A298677,
A298878,
A299045,
A299071,
A086386.
A299101
Indices of (probable) primes in A030221.
Original entry on oeis.org
2, 3, 5, 6, 8, 9, 15, 18, 23, 53, 114, 194, 564, 575, 585, 2594, 3143, 4578, 4970, 9261, 11508, 13298, 30018, 54993, 198476
Offset: 1
Cf.
A285992,
A299107,
A299109,
A088165,
A117522,
A299100,
A299101,
A113501,
A269253,
A298675,
A298677,
A298878,
A299045,
A299071.
A299100
Indices k such that s_k(4) is a (probable) prime, where s_k(4) = 4*s_{k-1}(4) - s_{k-2}(4), k >= 2, s_0(4) = 1, s_1(4) = 5.
Original entry on oeis.org
1, 2, 3, 6, 9, 14, 18, 146, 216, 293, 704, 1143, 1530, 1593, 2924, 7163, 9176, 9489, 11531, 39543, 50423, 60720, 62868, 69993, 69995, 88103, 88163, 104606, 164441, 178551
Offset: 1
Cf.
A285992,
A299107,
A299109,
A088165,
A117522,
A299100,
A299101,
A113501,
A269253,
A298675,
A298677,
A298878,
A299045,
A299071.
-
s[k_, m_] := s[k, m] = Which[k == 0, 1, k == 1, 1 + m, True, m s[k - 1, m] - s[k - 2, m]]; Select[Range@ 2000, PrimeQ@ Abs@ s[#, 4] &] (* Michael De Vlieger, Feb 03 2018 *)
A299071
Union_{odd primes p, n >= 3} {T_p(n)}, where T_m(x) = x*T_{m-1}(x) - T_{m-2}(x), m >= 2, T_0(x) = 2, T_1(x) = x (dilated Chebyshev polynomials of the first kind).
Original entry on oeis.org
18, 52, 110, 123, 198, 488, 702, 724, 843, 970, 1298, 1692, 2158, 2525, 3330, 4048, 4862, 5778, 6726, 6802, 7940, 9198, 10084, 10582, 13752, 15550, 17498, 19602, 21868, 24302, 26910, 29698, 30248, 32672, 35838, 39603, 42770, 46548, 50542
Offset: 1
Cf.
A285992,
A299107,
A299109,
A088165,
A117522,
A299100,
A299101,
A113501,
A269253,
A269254,
A294099,
A298675,
A298677,
A299045,
A299071.
-
maxT = 55000; maxn = 12;
T[0][] = 2; T[1][x] = x;
T[m_][x_] := T[m][x] = x T[m-1][x] - T[m-2][x];
TT = Table[T[p][n], {p, Prime[Range[2, maxn]]}, {n, 3, Prime[maxn]}] // Flatten // Union // Select[#, # <= maxT&]&;
avoid = Table[T[p][T[2][n]], {p, Prime[Range[2, maxn]]}, {n, 3, Prime[maxn] }] // Flatten // Union // Select[#, # <= maxT&]&;
Complement[TT, avoid] (* Jean-François Alcover, Nov 03 2018 *)
Comments