cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Andrew Hone

Andrew Hone's wiki page.

Andrew Hone has authored 21 sequences. Here are the ten most recent ones:

A299109 Probable primes in A030221.

Original entry on oeis.org

29, 139, 3191, 15289, 350981, 1681651, 20344613659, 2237722536169, 5650248517599839, 1464318118372209903213451940281613111, 471219735266432821374794400248484805597413615642086220363989152195627985749609
Offset: 1

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
Subsequent terms have too many digits to display.

Crossrefs

Formula

a(n) = A030221(A299101(n)).

A299107 Probable primes in sequence {s_k(4)}, where s_k(4) = 4*s_{k-1}(4) - s_{k-2}(4), k >= 2, s_0(4) = 1, s_1(4) = 5.

Original entry on oeis.org

5, 19, 71, 3691, 191861, 138907099, 26947261171, 436315574686414344004975231616076636245689199862837798457639364993981991744926792179
Offset: 1

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
Subsequent terms have too many digits to display.

Formula

a(n) = s_{A299100(n)}(4) = A001834(A299100(n)).

A299101 Indices of (probable) primes in A030221.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 15, 18, 23, 53, 114, 194, 564, 575, 585, 2594, 3143, 4578, 4970, 9261, 11508, 13298, 30018, 54993, 198476
Offset: 1

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
a(25) > 2*10^5. - Robert Price, Jul 03 2020

Programs

Formula

A299109(n) = A030221(a(n)). - R. J. Mathar, Jul 22 2022

Extensions

a(24) from Robert Price, Jul 03 2020

A299100 Indices k such that s_k(4) is a (probable) prime, where s_k(4) = 4*s_{k-1}(4) - s_{k-2}(4), k >= 2, s_0(4) = 1, s_1(4) = 5.

Original entry on oeis.org

1, 2, 3, 6, 9, 14, 18, 146, 216, 293, 704, 1143, 1530, 1593, 2924, 7163, 9176, 9489, 11531, 39543, 50423, 60720, 62868, 69993, 69995, 88103, 88163, 104606, 164441, 178551
Offset: 1

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
a(31) > 2*10^5. - Robert Price, May 29 2020

Crossrefs

Programs

  • Mathematica
    s[k_, m_] := s[k, m] = Which[k == 0, 1, k == 1, 1 + m, True, m s[k - 1, m] - s[k - 2, m]]; Select[Range@ 2000, PrimeQ@ Abs@ s[#, 4] &] (* Michael De Vlieger, Feb 03 2018 *)

Extensions

a(24)-a(30) from Robert Price, May 29 2020

A299071 Union_{odd primes p, n >= 3} {T_p(n)}, where T_m(x) = x*T_{m-1}(x) - T_{m-2}(x), m >= 2, T_0(x) = 2, T_1(x) = x (dilated Chebyshev polynomials of the first kind).

Original entry on oeis.org

18, 52, 110, 123, 198, 488, 702, 724, 843, 970, 1298, 1692, 2158, 2525, 3330, 4048, 4862, 5778, 6726, 6802, 7940, 9198, 10084, 10582, 13752, 15550, 17498, 19602, 21868, 24302, 26910, 29698, 30248, 32672, 35838, 39603, 42770, 46548, 50542
Offset: 1

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
Sequence avoids numbers of the form T_p(T_2(j)).

Crossrefs

Programs

  • Mathematica
    maxT = 55000; maxn = 12;
    T[0][] = 2; T[1][x] = x;
    T[m_][x_] := T[m][x] = x T[m-1][x] - T[m-2][x];
    TT = Table[T[p][n], {p, Prime[Range[2, maxn]]}, {n, 3, Prime[maxn]}] // Flatten // Union // Select[#, # <= maxT&]&;
    avoid = Table[T[p][T[2][n]], {p, Prime[Range[2, maxn]]}, {n, 3, Prime[maxn] }] // Flatten // Union // Select[#, # <= maxT&]&;
    Complement[TT, avoid] (* Jean-François Alcover, Nov 03 2018 *)

A299045 Rectangular array: A(n,k) = Sum_{j=0..k} (-1)^floor(j/2)*binomial(k-floor((j+1)/2), floor(j/2))*(-n)^(k-j), n >= 1, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, -1, -1, 1, -2, 1, 1, 1, -3, 5, -1, 0, 1, -4, 11, -13, 1, -1, 1, -5, 19, -41, 34, -1, 1, 1, -6, 29, -91, 153, -89, 1, 0, 1, -7, 41, -169, 436, -571, 233, -1, -1, 1, -8, 55, -281, 985, -2089, 2131, -610, 1, 1, 1, -9, 71, -433, 1926, -5741, 10009, -7953, 1597, -1, 0
Offset: 1

Author

Keywords

Comments

This array is used to compute A269252: A269252(n) = least k such that |A(n,k)| is a prime, or -1 if no such k exists.
For detailed theory, see [Hone].
The array can be extended to k<0 with A(n, k) = -A(n, -k-1) for all k in Z. - Michael Somos, Jun 19 2023

Examples

			Array begins:
1   0  -1     1     0      -1       1         0        -1           1
1  -1   1    -1     1      -1       1        -1         1          -1
1  -2   5   -13    34     -89     233      -610      1597       -4181
1  -3  11   -41   153    -571    2131     -7953     29681     -110771
1  -4  19   -91   436   -2089   10009    -47956    229771    -1100899
1  -5  29  -169   985   -5741   33461   -195025   1136689    -6625109
1  -6  41  -281  1926  -13201   90481   -620166   4250681   -29134601
1  -7  55  -433  3409  -26839  211303  -1663585  13097377  -103115431
1  -8  71  -631  5608  -49841  442961  -3936808  34988311  -310957991
1  -9  89  -881  8721  -86329  854569  -8459361  83739041  -828931049
		

Crossrefs

Cf. A094954 (unsigned version of this array, but missing the first row).

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[LinearRecurrence[{-n, -1}, {1, 1 - n}, 10], {n, 10}]]
    (*Array antidiagonals flattened (gives this sequence):*)
    A299045[n_, k_] := Sum[(-1)^(Floor[j/2]) Binomial[k - Floor[(j + 1)/2], Floor[j/2]] (-n)^(k - j), {j, 0, k}]; Flatten[Table[A299045[n - k, k], {n, 11}, {k, 0, n - 1}]]
  • PARI
    {A(n, k) = sum(j=0, k, (-1)^(j\2)*binomial(k-(j+1)\2, j\2)*(-n)^(k-j))}; /* Michael Somos, Jun 19 2023 */

Formula

G.f. for row n: (1 + x)/(1 + n*x + x^2), n >= 1.
A(n, k) = B(-n, k) where B = A294099. - Michael Somos, Jun 19 2023

A298878 Union_{p prime, n >= 0} {T_p(n)}, where T_m(x) = x*T_{m-1}(x) - T_{m-2}(x), m >= 2, T_0(x) = 2, T_1(x) = x (dilated Chebyshev polynomials of the first kind).

Original entry on oeis.org

-2, -1, 0, 1, 2, 7, 14, 18, 23, 34, 47, 52, 62, 79, 98, 110, 119, 123, 142, 167, 194, 198, 223, 254, 287, 322, 359, 398, 439, 482, 488, 527, 574, 623, 674, 702, 724, 727, 782, 839, 843, 898, 959, 970, 1022, 1087, 1154, 1223, 1294, 1298, 1367, 1442, 1519, 1598
Offset: 1

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].

A298677 a(n) = 110*a(n-1) - a(n-2) for n >= 2, a(0)=1, a(1)=111.

Original entry on oeis.org

1, 111, 12209, 1342879, 147704481, 16246150031, 1786928798929, 196545921732159, 21618264461738561, 2377812544869509551, 261537761671184312049, 28766775971285404815839, 3164083819079723345430241, 348020453322798282592510671, 38279085781688731361830743569, 4210351415532437651518789281919
Offset: 0

Author

Keywords

Comments

Sequence {s_k(110)} of A269254.
The sequence contains no primes; see A269254 for a proof by N. J. A. Sloane.
For detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018

Programs

  • Mathematica
    s[0, n_] := 1; s[1, n_] := n + 1; s[k_, n_] := n*s[k - 1, n] - s[k - 2, n]; Table[s[k, 110], {k, 0, 15}]
    LinearRecurrence[{110, -1}, {1, 111}, 15]
    CoefficientList[Series[(1 + x)/(1 - 110*x + x^2), {x, 0, 14}], x]
  • PARI
    Vec((1 + x)/(1 - 110*x + x^2) + O(x^20)) \\ Colin Barker, Jan 25 2018

Formula

G.f.: (1 + x)/(1 - 110*x + x^2).
a(n) = (1/18)*((55+12*sqrt(21))^(-n)*(9-2*sqrt(21) + (9+2*sqrt(21))*(55+12*sqrt(21))^(2*n))). - Colin Barker, Jan 25 2018

A298675 Rectangular array A: first differences of row entries of array A294099, read by antidiagonals.

Original entry on oeis.org

1, 2, -1, 3, 2, -2, 4, 7, 2, -1, 5, 14, 18, 2, 1, 6, 23, 52, 47, 2, 2, 7, 34, 110, 194, 123, 2, 1, 8, 47, 198, 527, 724, 322, 2, -1, 9, 62, 322, 1154, 2525, 2702, 843, 2, -2, 10, 79, 488, 2207, 6726, 12098, 10084, 2207, 2, -1, 11, 98, 702, 3842, 15127, 39202, 57965, 37634, 5778, 2, 1
Offset: 1

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
From Charles L. Hohn, Sep 28 2024: (Start)
For rows n >= 3, values x >= 3 where (x^2-4)/(n^2-4) is a square.
For rows n >= 3, Lim_{k->oo}(T(n, k+1)/T(n, k)) = (sqrt(n^2-4)+n)/2. (End)

Examples

			Array begins:
   1 -1  -2   -1     1      2       1       -1        -2         -1
   2  2   2    2     2      2       2        2         2          2
   3  7  18   47   123    322     843     2207      5778      15127
   4 14  52  194   724   2702   10084    37634    140452     524174
   5 23 110  527  2525  12098   57965   277727   1330670    6375623
   6 34 198 1154  6726  39202  228486  1331714   7761798   45239074
   7 47 322 2207 15127 103682  710647  4870847  33385282  228826127
   8 62 488 3842 30248 238142 1874888 14760962 116212808  914941502
   9 79 702 6239 55449 492802 4379769 38925119 345946302 3074591599
  10 98 970 9602 95050 940898 9313930 92198402 912670090 9034502498
		

Programs

  • Mathematica
    t[n_, 0] := 2; t[n_, 1] := n; t[n_, k_] := n*t[n, k - 1] - t[n, k - 2]; Table[t[n, k], {n, 10}, {k, 10}] // Grid

Formula

A(n,k) = T_k(n), n >= 1, k >= 1, where T_j(x) = x*T_{j-1}(x) - T_{j-2}(x), j >= 2, T_0(x) = 2, T_1(x) = x, (dilated Chebyshev polynomials of the first kind).

A294099 Rectangular array read by (upward) antidiagonals: A(n,k) = Sum_{j=0..k} (-1)^floor(j/2)*binomial(k-floor((j+1)/2), floor(j/2))*n^(k-j), n >= 1, k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 4, 5, -1, 1, 5, 11, 7, -2, 1, 6, 19, 29, 9, -1, 1, 7, 29, 71, 76, 11, 1, 1, 8, 41, 139, 265, 199, 13, 2, 1, 9, 55, 239, 666, 989, 521, 15, 1, 1, 10, 71, 377, 1393, 3191, 3691, 1364, 17, -1, 1, 11, 89, 559, 2584, 8119, 15289, 13775, 3571, 19, -2
Offset: 1

Author

Keywords

Comments

This array is used to compute A269254: A269254(n) = least k such that A(n,k) is a prime, or -1 if no such k exists.
For detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018
The array can be extended to k<0 with A(n, k) = -A(n, -k-1) for all k in Z. - Michael Somos, Jun 19 2023

Examples

			Array begins:
  1   2    1    -1     -2      -1        1         2          1          -1
  1   3    5     7      9      11       13        15         17          19
  1   4   11    29     76     199      521      1364       3571        9349
  1   5   19    71    265     989     3691     13775      51409      191861
  1   6   29   139    666    3191    15289     73254     350981     1681651
  1   7   41   239   1393    8119    47321    275807    1607521     9369319
  1   8   55   377   2584   17711   121393    832040    5702887    39088169
  1   9   71   559   4401   34649   272791   2147679   16908641   133121449
  1  10   89   791   7030   62479   555281   4935050   43860169   389806471
  1  11  109  1079  10681  105731  1046629  10360559  102558961  1015229051
		

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[LinearRecurrence[{n, -1}, {1, 1 + n}, 10], {n, 10}]]
    (* Array antidiagonals flattened (gives this sequence): *)
    A294099[n_, k_] := Sum[(-1)^(Floor[j/2]) Binomial[k - Floor[(j + 1)/2], Floor[j/2]] n^(k - j), {j, 0, k}]; Flatten[Table[A294099[n - k, k], {n, 11}, {k, 0, n - 1}]]
  • PARI
    {A(n, k) = sum(j=0, k, (-1)^(j\2)*binomial(k-(j+1)\2, j\2)*n^(k-j))}; /* Michael Somos, Jun 19 2023 */

Formula

A(n,0) = 1, A(n,1) = n + 1, A(n,k) = n*A(n,k-1) - A(n,k-2), n >= 1, k >= 2.
G.f. for row n: (1 + x)/(1 - n*x + x^2), n >= 1.
A(n, k) = B(-n, k) where B = A299045. - Michael Somos, Jun 19 2023