A298675 Rectangular array A: first differences of row entries of array A294099, read by antidiagonals.
1, 2, -1, 3, 2, -2, 4, 7, 2, -1, 5, 14, 18, 2, 1, 6, 23, 52, 47, 2, 2, 7, 34, 110, 194, 123, 2, 1, 8, 47, 198, 527, 724, 322, 2, -1, 9, 62, 322, 1154, 2525, 2702, 843, 2, -2, 10, 79, 488, 2207, 6726, 12098, 10084, 2207, 2, -1, 11, 98, 702, 3842, 15127, 39202, 57965, 37634, 5778, 2, 1
Offset: 1
Examples
Array begins: 1 -1 -2 -1 1 2 1 -1 -2 -1 2 2 2 2 2 2 2 2 2 2 3 7 18 47 123 322 843 2207 5778 15127 4 14 52 194 724 2702 10084 37634 140452 524174 5 23 110 527 2525 12098 57965 277727 1330670 6375623 6 34 198 1154 6726 39202 228486 1331714 7761798 45239074 7 47 322 2207 15127 103682 710647 4870847 33385282 228826127 8 62 488 3842 30248 238142 1874888 14760962 116212808 914941502 9 79 702 6239 55449 492802 4379769 38925119 345946302 3074591599 10 98 970 9602 95050 940898 9313930 92198402 912670090 9034502498
Links
- Andrew N. W. Hone, et al., On a family of sequences related to Chebyshev polynomials, arXiv:1802.01793 [math.NT], 2018.
Crossrefs
Programs
-
Mathematica
t[n_, 0] := 2; t[n_, 1] := n; t[n_, k_] := n*t[n, k - 1] - t[n, k - 2]; Table[t[n, k], {n, 10}, {k, 10}] // Grid
Formula
A(n,k) = T_k(n), n >= 1, k >= 1, where T_j(x) = x*T_{j-1}(x) - T_{j-2}(x), j >= 2, T_0(x) = 2, T_1(x) = x, (dilated Chebyshev polynomials of the first kind).
Comments