cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Antti Karttunen

Antti Karttunen's wiki page.

Antti Karttunen has authored 11177 sequences. Here are the ten most recent ones:

A387425 Partial sums of A387413.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 10, 13, 13, 16, 19, 22, 25, 28, 31, 33, 33, 36, 40, 44, 47, 51, 55, 56, 58, 61, 64, 66, 69, 73, 78, 79, 84, 87, 92, 96, 99, 103, 106, 108, 110, 113, 118, 121, 124, 129, 131, 135, 140, 145, 150, 154, 159, 164, 169, 169, 174, 177, 182, 187, 191, 196, 201, 207, 213, 216, 221, 225, 231, 235, 240, 243
Offset: 1

Author

Antti Karttunen, Sep 01 2025

Keywords

Crossrefs

Cf. also A387424.

Programs

  • PARI
    up_to = 65537;
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A387413(n) = { my(a=binary(n), b=binary(A003961(n)), i=1); while(i<=#a,if(a[i]!=b[i],return(#a-(i-1))); i++); (0); };
    A387425list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2,up_to,v[n] = v[n-1]+A387413(n)); (v); };
    v387425 = A387425list(up_to);
    A387425(n) = v387425[n];

A387424 Partial sums of A387423.

Original entry on oeis.org

0, 1, 2, 4, 6, 6, 8, 11, 14, 16, 19, 21, 23, 25, 27, 31, 33, 34, 37, 38, 41, 44, 48, 51, 54, 58, 62, 62, 64, 68, 72, 77, 82, 87, 92, 96, 98, 103, 108, 111, 113, 118, 121, 124, 128, 132, 137, 141, 145, 150, 155, 158, 160, 164, 169, 172, 177, 182, 185, 190, 192, 196, 200, 206, 211, 215, 218, 224, 230, 234, 238, 244
Offset: 1

Author

Antti Karttunen, Sep 01 2025

Keywords

Crossrefs

Cf. also A387425.

Programs

  • PARI
    up_to = 65537;
    A387423(n) = { my(a=binary(n), b=binary(sigma(n)), i=1); while(i<=#a,if(a[i]!=b[i],return(#a-(i-1))); i++); (0); };
    A387424list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2,up_to,v[n] = v[n-1]+A387423(n)); (v); };
    v387424 = A387424list(up_to);
    A387424(n) = v387424[n];

A387422 The length of the maximal common prefix of the binary expansions of n and sigma(n), where sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 3, 4, 2, 4, 2, 2, 1, 2, 2, 1, 1, 5, 3, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 3, 4, 1, 3, 3, 2, 2, 1, 2, 2, 1, 1, 3, 4, 2, 1, 3, 1, 1, 3, 1, 4, 2, 2, 1, 2, 3, 4, 1, 1, 3, 3, 1, 5, 1, 1, 3, 1, 2, 2, 3, 1, 1, 4, 1, 1, 2, 1, 5, 5, 1, 1, 3, 2, 2, 1, 2, 5, 1, 1, 3, 5, 3, 3, 6, 3
Offset: 1

Author

Antti Karttunen, Sep 01 2025

Keywords

Crossrefs

Programs

  • PARI
    A387422(n) = { my(a=binary(n), b=binary(sigma(n)), i=1); while(i<=#a,if(a[i]!=b[i],return(i-1)); i++); (#a); };

Formula

a(n) = (1+A000523(n)) - A387423(n).

A387413 The length of binary expansion of n minus the length of the maximal common prefix of the binary expansions of n and A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

0, 1, 1, 0, 2, 1, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 2, 0, 3, 4, 4, 3, 4, 4, 1, 2, 3, 3, 2, 3, 4, 5, 1, 5, 3, 5, 4, 3, 4, 3, 2, 2, 3, 5, 3, 3, 5, 2, 4, 5, 5, 5, 4, 5, 5, 5, 0, 5, 3, 5, 5, 4, 5, 5, 6, 6, 3, 5, 4, 6, 4, 5, 3, 6, 6, 6, 4, 6, 5, 5, 5, 5, 4, 6, 5, 5, 5, 4, 6, 5, 3, 5, 1, 5, 4, 6, 3, 6, 6, 4, 2, 6, 4, 5, 4
Offset: 1

Author

Antti Karttunen, Sep 01 2025

Keywords

Crossrefs

Cf. A000523, A003961, A387412, A387414 (positions of 0's).
Cf. also A387423.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A387413(n) = { my(a=binary(n), b=binary(A003961(n)), i=1); while(i<=#a,if(a[i]!=b[i],return(#a-(i-1))); i++); (0); };

Formula

a(n) = (1+A000523(n)) - A387412(n).

A387412 The length of the maximal common prefix of the binary expansions of n and A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1, 4, 3, 2, 2, 3, 2, 1, 1, 5, 1, 3, 1, 2, 3, 2, 3, 4, 4, 3, 1, 3, 3, 1, 4, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 3, 1, 1, 2, 1, 2, 1, 1, 4, 2, 3, 1, 3, 2, 4, 1, 1, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 4, 2, 6, 2, 3, 1, 4, 1, 1, 3, 5, 1, 3, 2, 3
Offset: 1

Author

Antti Karttunen, Sep 01 2025

Keywords

Crossrefs

Cf. also A387422.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A387412(n) = { my(a=binary(n), b=binary(A003961(n)), i=1); while(i<=#a,if(a[i]!=b[i],return(i-1)); i++); (#a); };

Formula

a(n) = (1+A000523(n)) - A387413(n).

A387423 The length of binary expansion of n minus the length of the maximal common prefix of the binary expansions of n and sigma(n), where sigma is the sum of divisors function.

Original entry on oeis.org

0, 1, 1, 2, 2, 0, 2, 3, 3, 2, 3, 2, 2, 2, 2, 4, 2, 1, 3, 1, 3, 3, 4, 3, 3, 4, 4, 0, 2, 4, 4, 5, 5, 5, 5, 4, 2, 5, 5, 3, 2, 5, 3, 3, 4, 4, 5, 4, 4, 5, 5, 3, 2, 4, 5, 3, 5, 5, 3, 5, 2, 4, 4, 6, 5, 4, 3, 6, 6, 4, 4, 6, 2, 6, 6, 4, 6, 5, 5, 4, 6, 6, 3, 6, 6, 5, 6, 2, 2, 6, 6, 4, 5, 5, 6, 5, 2, 6, 6, 4, 2, 4, 4, 1, 4
Offset: 1

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Positions of 0's in this sequence is given by such numbers n that sigma(n) = 2^k * n + r, for some n >= 1, k >= 0, 0 <= r < 2^k. These would include also quasi-perfect numbers and their generalizations, numbers n such that sigma(n) = 2^k * n + 2^k - 1, for some n > 1, k > 0 (see comments in A332223), if such numbers exist. However, it is conjectured that there are no other zeros than those given by A336702.

Crossrefs

Cf. A000203, A000523, A332223, A336700, A336701, A336702 (conjectured positions of 0's), A387422.
Cf. also A347381, A387413.

Programs

  • PARI
    A387423(n) = { my(a=binary(n), b=binary(sigma(n)), i=1); while(i<=#a,if(a[i]!=b[i],return(#a-(i-1))); i++); (0); };

Formula

a(n) = (1+A000523(n)) - A387422(n).

A387414 Numbers k such that the binary expansion of k is a prefix of the binary expansion of A003961(k), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

1, 4, 10, 18, 57, 348, 1054, 2626, 60625, 68727, 129260, 192276, 675348, 960320, 5368464, 12371554, 30078308, 356311953, 1158654378, 1673018314
Offset: 1

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Numbers k such that A003961(k) = 2^e * k + r, for some k >= 1, e >= 0, 0 <= r < 2^e.

Examples

			A007088(4) = 100, and A007088(A003961(4)) = A007088(9) = 1001 begins with the same binary string, therefore 4 is included.
A007088(18) = 10010, and A007088(A003961(18)) = A007088(75) = 1001011 begins with the same binary string, therefore 18 is included as a term. Also, 75 = 2^2 * 18 + 3.
		

Crossrefs

Positions of 0's in A387413.
Subsequences: A348514 (which is also a subsequence of A387411).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    is_A387414(n) = { my(s=A003961(n)); while(s>n, s >>= 1); (s==n); };

A387419 Numbers k such that the odd part of (1+k) divides (1 + odd part of A003959(k)), where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

1, 3, 4, 7, 15, 31, 40, 63, 127, 255, 511, 639, 1023, 2047, 2175, 2431, 4095, 5247, 8191, 14335, 16383, 32767, 40959, 44031, 57855, 65535, 90111, 131071, 204799, 262143, 376831, 524287, 923647, 1048575, 1632255, 2056191, 2097151, 2621439, 2744319, 4194303, 6815743, 8388607, 8781823, 16777215, 19922943, 24068095
Offset: 1

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Like in many sequences of this type, the criterion seems to strongly select for numbers with a long tail of trailing 1-bits. Terms 1, 4 and 40 are probably the only terms that are not in A004767.

Crossrefs

Cf. A000225 (subsequence), A000265, A003959, A004767.
For similar sequences, see A336700, A387410, A387411, A387415, A387418.

Programs

A387418 Numbers k such that the odd part of (1+k) divides (1 + odd part of A034448(k)), where A034448 is unitary sigma (usigma).

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 1791, 2047, 2431, 4095, 8191, 14335, 14847, 16383, 27391, 32767, 44031, 57855, 65535, 114687, 131071, 204799, 262143, 376831, 524287, 923647, 1048575, 1632255, 2056191, 2097151, 2744319, 4194303, 6815743, 8388607, 8781823, 8978431, 12058623, 16777215, 19922943, 24068095
Offset: 1

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Like in many sequences of this type, the criterion seems to strongly select for numbers with a long tail of trailing 1-bits. The initial 1 is probably the only term that is not in A004767.

Crossrefs

Cf. A000225 (subsequence), A000265, A002827, A004767, A034448.
For similar sequences, see A336700, A387410, A387415, A387419.

Programs

A387415 Numbers k such that the odd part of (1+k) divides (1 + odd part of A001615(k)), where A001615 is Dedekind's psi-function.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 2431, 4095, 8191, 14335, 16383, 27135, 32767, 44031, 57855, 65535, 75775, 131071, 204799, 262143, 376831, 524287, 667135, 923647, 1048575, 1441791, 1632255, 2056191, 2097151, 2315775, 2744319, 4194303, 6768639, 6815743, 8388607, 8781823, 16777215, 19922943, 24068095
Offset: 1

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Like in many sequences of this type, the criterion seems to strongly select for numbers with a long tail of trailing 1-bits. The initial 1 is probably the only term that is not in A004767.

Crossrefs

Cf. A000225 (subsequence), A000265, A001615.
For similar sequences, see A336700, A387410, A387418, A387419.

Programs