cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A387424 Partial sums of A387423.

Original entry on oeis.org

0, 1, 2, 4, 6, 6, 8, 11, 14, 16, 19, 21, 23, 25, 27, 31, 33, 34, 37, 38, 41, 44, 48, 51, 54, 58, 62, 62, 64, 68, 72, 77, 82, 87, 92, 96, 98, 103, 108, 111, 113, 118, 121, 124, 128, 132, 137, 141, 145, 150, 155, 158, 160, 164, 169, 172, 177, 182, 185, 190, 192, 196, 200, 206, 211, 215, 218, 224, 230, 234, 238, 244
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Crossrefs

Cf. also A387425.

Programs

  • PARI
    up_to = 65537;
    A387423(n) = { my(a=binary(n), b=binary(sigma(n)), i=1); while(i<=#a,if(a[i]!=b[i],return(#a-(i-1))); i++); (0); };
    A387424list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2,up_to,v[n] = v[n-1]+A387423(n)); (v); };
    v387424 = A387424list(up_to);
    A387424(n) = v387424[n];

Formula

a(1) = 0; for n > 1, a(n) = a(n-1) + A387423(n).

A387413 The length of binary expansion of n minus the length of the maximal common prefix of the binary expansions of n and A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p).

Original entry on oeis.org

0, 1, 1, 0, 2, 1, 2, 3, 3, 0, 3, 3, 3, 3, 3, 3, 2, 0, 3, 4, 4, 3, 4, 4, 1, 2, 3, 3, 2, 3, 4, 5, 1, 5, 3, 5, 4, 3, 4, 3, 2, 2, 3, 5, 3, 3, 5, 2, 4, 5, 5, 5, 4, 5, 5, 5, 0, 5, 3, 5, 5, 4, 5, 5, 6, 6, 3, 5, 4, 6, 4, 5, 3, 6, 6, 6, 4, 6, 5, 5, 5, 5, 4, 6, 5, 5, 5, 4, 6, 5, 3, 5, 1, 5, 4, 6, 3, 6, 6, 4, 2, 6, 4, 5, 4
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Crossrefs

Cf. A000523, A003961, A387412, A387414 (positions of 0's).
Cf. also A387423.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A387413(n) = { my(a=binary(n), b=binary(A003961(n)), i=1); while(i<=#a,if(a[i]!=b[i],return(#a-(i-1))); i++); (0); };

Formula

a(n) = (1+A000523(n)) - A387412(n).

A387422 The length of the maximal common prefix of the binary expansions of n and sigma(n), where sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 3, 4, 2, 4, 2, 2, 1, 2, 2, 1, 1, 5, 3, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 3, 4, 1, 3, 3, 2, 2, 1, 2, 2, 1, 1, 3, 4, 2, 1, 3, 1, 1, 3, 1, 4, 2, 2, 1, 2, 3, 4, 1, 1, 3, 3, 1, 5, 1, 1, 3, 1, 2, 2, 3, 1, 1, 4, 1, 1, 2, 1, 5, 5, 1, 1, 3, 2, 2, 1, 2, 5, 1, 1, 3, 5, 3, 3, 6, 3
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Crossrefs

Programs

  • PARI
    A387422(n) = { my(a=binary(n), b=binary(sigma(n)), i=1); while(i<=#a,if(a[i]!=b[i],return(i-1)); i++); (#a); };

Formula

a(n) = (1+A000523(n)) - A387423(n).
Showing 1-3 of 3 results.