cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Vladimir Baltic

Vladimir Baltic's wiki page.

Vladimir Baltic has authored 88 sequences. Here are the ten most recent ones:

A224813 Number of subsets of {1,2,...,n-12} without differences equal to 2, 4, 6, 8, 10 or 12.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 80, 100, 130, 169, 221, 289, 374, 484, 616, 784, 980, 1225, 1505, 1849, 2279, 2809, 3498, 4356, 5478, 6889, 8715, 11025, 13965, 17689, 22344, 28224, 35448, 44521, 55704, 69696, 87120, 108900, 136290, 170569, 213934, 268324, 337218, 423801, 533169, 670761, 843570
Offset: 0

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=12, I={-2,0,12}.

Programs

  • Mathematica
    CoefficientList[Series[-(-1 + x^7 + x^9 + x^11 + 2*x^14 + x^16 - 2*x^21 - 2*x^23 - x^28 + x^35)/((x^7 + x - 1)*(x^42 - x^36 - 2*x^30 - 3*x^28 + 2*x^24 + 2*x^22 + x^18 + 2*x^16 + 3*x^14 - x^12 - x^10 - x^8 - 1)), {x, 0, 1000}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec(-(-1 + x^7 + x^9 + x^11 + 2*x^14 + x^16 - 2*x^21 - 2*x^23 - x^28 + x^35)/((x^7 + x - 1)*(x^42 - x^36 - 2*x^30 - 3*x^28 + 2*x^24 + 2*x^22 + x^18 + 2*x^16 + 3*x^14 - x^12 - x^10 - x^8 - 1))) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-7) -a(n-8) +a(n-9) -a(n-10) +a(n-11) -a(n-12) +a(n-13) +3*a(n-14) -2*a(n-15) +2*a(n-16) -a(n-17) +a(n-18) -3*a(n-21) +2*a(n-22) -4*a(n-23) +2*a(n-24) -3*a(n-25) -3*a(n-28) +a(n-29) -2*a(n-30) +3*a(n-35) -a(n-36) +3*a(n-37) +a(n-42) -a(n-49).
G.f.: -(-1 +x^7 +x^9 +x^11 +2*x^14 +x^16 -2*x^21 -2*x^23 -x^28 +x^35)/( (x^7+x-1) *(x^42 -x^36 -2*x^30 -3*x^28 +2*x^24 +2*x^22 +x^18 +2*x^16 +3*x^14 -x^12 -x^10 -x^8 -1) ).
a(2*k) = (A005709(k))^2, a(2*k+1) = A005709(k) * A005709(k+1).

A224814 Number of subsets of {1,2,...,n-9} without differences equal to 3, 6 or 9.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 80, 100, 125, 175, 245, 343, 490, 700, 1000, 1400, 1960, 2744, 3724, 5054, 6859, 9386, 12844, 17576, 24336, 33696, 46656, 64800, 90000, 125000, 172500, 238050, 328509, 452295, 622725, 857375, 1182275, 1630295, 2248091, 3106141, 4291691, 5929741, 8190250, 11312500, 15625000, 21562500
Offset: 0

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=3, r=9, I={-3,0,9}.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^4 - x^5 - x^7 - x^8 + 2*x^9 - x^10 - 3*x^12 - x^13 - 2*x^15 + 3*x^16 + 3*x^17 + 2*x^18 - x^20 - 4*x^21 + x^23 + 3*x^24 + 3*x^25 + x^27 - 4*x^28 - x^29 - 2*x^30 + x^31 + 2*x^33 +x^34 - x^36 - x^37 + x^40)/((1 - x - x^4)*(1 - x^9 - x^12)*(1 + x^6 + 4*x^9 - 4*x^12 - 2*x^15 + 4*x^18 - 3*x^21 - 3*x^24 + 7*x^27 - 6*x^30 + 3*x^33 - x^36)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec((1 -x^4 -x^5 -x^7 -x^8 +2*x^9 -x^10 -3*x^12 -x^13 -2*x^15 +3*x^16 +3*x^17 +2*x^18 -x^20 -4*x^21 +x^23 +3*x^24 +3*x^25 +x^27 -4*x^28 -x^29 -2*x^30 +x^31 +2*x^33 +x^34 -x^36 -x^37 +x^40 )/((1-x-x^4)*(1-x^9-x^12)*(1 +x^6 +4*x^9 -4*x^12 -2*x^15 +4*x^18 -3*x^21 -3*x^24 +7*x^27 -6*x^30 +3*x^33 -x^36))) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-4) -a(n-6) +a(n-7) -3*a(n-9) +4*a(n-10) +5*a(n-12) -2*a(n-13) +3*a(n-15) -8*a(n-16) +a(n-18) -4*a(n-19) +3*a(n-21) -4*a(n-22) -3*a(n-24) -5*a(n-27) +8*a(n-28) +7*a(n-30) -2*a(n-31) -9*a(n-33) +2*a(n-34) +5*a(n-36) +4*a(n-37) +a(n-39) -6*a(n-40) -3*a(n-42) +2*a(n-43) +2*a(n-45) +a(n-46) -a(n-48) -a(n-49) +a(n-52).
G.f.: (1 -x^4 -x^5 -x^7 -x^8 +2*x^9 -x^10 -3*x^12 -x^13 -2*x^15 +3*x^16 +3*x^17 +2*x^18 -x^20 -4*x^21 +x^23 +3*x^24 +3*x^25 +x^27 -4*x^28 -x^29 -2*x^30 +x^31 +2*x^33 +x^34 -x^36 -x^37 +x^40 )/((1-x-x^4)*(1-x^9-x^12)*(1 +x^6 +4*x^9 -4*x^12 -2*x^15 +4*x^18 -3*x^21 -3*x^24 +7*x^27 -6*x^30 +3*x^33 -x^36)).
a(3*k) = (A003269(k))^3,
a(3*k+1) = (A003269(k))^2 * A003269(k+1),
a(3*k+2) = A003269(k) * (A003269(k+1))^2.

A224815 Number of subsets of {1,2,...,n-8} without differences equal to 4 or 8.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 24, 36, 54, 81, 108, 144, 192, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 9477, 13689, 19773, 28561, 41743, 61009, 89167, 130321, 192052, 283024, 417088, 614656, 900032, 1317904, 1929788, 2825761
Offset: 0

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=4, r=8, I={-4,0,8}.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^3 + x^4 - x^5 - x^6 - 3*x^7 + 3*x^8 - 2*x^9 - x^10 - 5*x^11 - 3*x^12 - 2*x^13 + 3*x^15 - 3*x^16 - 3*x^18 + 3*x^19 - 3*x^20 + 3*x^21 + 3*x^23 + 6*x^24 - 3*x^25 - 2*x^26 - 4*x^27 - x^29 - x^30 - 2*x^31 - x^32 + x^33 + x^35 - x^36 + x^37 + x^39)/((1 - x - x^3)*(1 + x^4 + x^6)*(1 + x^4 - x^6)*(1 - x^4 - x^12)*(1 + x^4 + 6*x^8 - 3*x^12 + 2*x^20 + x^24)), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)

Formula

a(n) = a(n-1)+a(n-3)-2*a(n-4)+2*a(n-5)+2*a(n-7)-6*a(n-8)+6*a(n-9)+6*a(n-11) +a(n-12)-a(n-13)-a(n-15)+13*a(n-16)-13*a(n-17)-13*a(n-19)+15*a(n-20)-15*a(n-21)-15*a(n-23)-6*a(n-24)+6*a(n-25)+6*a(n-27)+3*a(n-28)-3*a(n-29)-3*a(n-31)-2*a(n-32)+2*a(n-33)+2*a(n-35)+8*a(n-36)-8*a(n-37)-8*a(n-39)+3*a(n-40)-3*a(n-41)-3*a(n-43)-a(n-44)+a(n-45)+a(n-47)-a(n-48)+a(n-49)+a(n-51).
G.f.: ( 1-x^3+x^4-x^5-x^6-3*x^7+3*x^8-2*x^9-x^10-5*x^11-3*x^12-2*x^13 +3*x^15-3*x^16-3*x^18+3*x^19-3*x^20+3*x^21+3*x^23+6*x^24-3*x^25-2*x^26-4*x^27-x^29-x^30-2*x^31-x^32+x^33+x^35-x^36+x^37+x^39 ) / ((1-x-x^3)*(1+x^4+x^6)*(1+x^4-x^6)*(1-x^4-x^12)*(1+x^4+6*x^8-3*x^12+2*x^20+x^24)).
a(4*k) = (A000930(k))^4,
a(4*k+1) = (A000930(k))^3 * A000930(k+1),
a(4*k+2) = (A000930(k))^2 * (A000930(k+1))^2,
a(4*k+3) = A000930(k) * (A000930(k+1))^3.

A224812 Number of subsets of {1,2,...,n-10} without differences equal to 2, 4, 6, 8 or 10.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 63, 81, 108, 144, 192, 256, 336, 441, 567, 729, 918, 1156, 1462, 1849, 2365, 3025, 3905, 5041, 6532, 8464, 10948, 14161, 18207, 23409, 29988, 38416, 49196, 63001, 80822, 103684, 133308, 171396, 220662, 284089, 365638, 470596, 605052, 777924, 999306, 1283689, 1648515
Offset: 0

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=10, I={-2,0,10}.

Programs

  • Mathematica
    CoefficientList[Series[-(x + 1)*(x^23 - x^22 + x^21 - x^20 + x^19 - x^13 + x^12 - 3*x^11 + 3*x^10 - 3*x^9 + 2*x^8 - 2*x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/((x^6 + x - 1)*(x^30 + x^24 - 2*x^20 - 2*x^18 - x^14 - 2*x^12 + x^10 + x^8 + x^6 + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec(-(x + 1)*(x^23 - x^22 + x^21 - x^20 + x^19 - x^13 + x^12 - 3*x^11 + 3*x^10 - 3*x^9 + 2*x^8 - 2*x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/((x^6 + x - 1)*(x^30 + x^24 - 2*x^20 - 2*x^18 - x^14 - 2*x^12 + x^10 + x^8 + x^6 + 1))) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-7) -a(n-8) +a(n-9) -a(n-10) +a(n-11) +3*a(n-12) -2*a(n-13) +2*a(n-14) -a(n-15) +a(n-16) -2*a(n-19) +a(n-20) -2*a(n-21) -3*a(n-24) +a(n-25) -2*a(n-26) +a(n-31) +a(n-36).
G.f.: -(x+1) *(x^23 -x^22 +x^21 -x^20 +x^19 -x^13 +x^12 -3*x^11 +3*x^10 -3*x^9 +2*x^8 -2*x^7 +x^6 -x^5 +x^4 -x^3 +x^2 -x +1)/ ((x^6 +x -1) *(x^30 +x^24 -2*x^20 -2*x^18 -x^14 -2*x^12 +x^10 +x^8 +x^6+1) ).
a(2*k) = (A005708(k))^2, a(2*k+1) = A005708(k) * A005708(k+1).

A224811 Number of subsets of {1,2,...,n-8} without differences equal to 2, 4, 6 or 8.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 48, 64, 88, 121, 165, 225, 300, 400, 520, 676, 884, 1156, 1530, 2025, 2700, 3600, 4800, 6400, 8480, 11236, 14840, 19600, 25900, 34225, 45325, 60025, 79625, 105625, 140075, 185761, 246101, 326041, 431676, 571536, 756756, 1002001, 1327326, 1758276, 2329782, 3087049, 4090296, 5419584
Offset: 0

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=8, I={-2,0,8}.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^10 - x^5 - x^7 + x^15)/((1 - x)*(1 + x)*(x^2 - x + 1)*(x^3 + x^2 - 1)*(x^6 - x^2 - 1)*(x^12 + x^10 + x^8 + 2*x^6 + x^4 + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x^10-x^5-x^7+x^15)/((1-x)*(1+x)*(x^2-x+1)*( x^3+x^2-1)*(x^6-x^2-1)*(x^12+x^10+x^8+2*x^6+x^4+1) )) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-5) -a(n-6) +a(n-7) -a(n-8) +a(n-9) +2*a(n-10) -a(n-11) +a(n-12) -2*a(n-15) +a(n-16) -2*a(n-17) -a(n-20) +a(n-25).
G.f.: (1-x^10-x^5-x^7+x^15) / ( (1-x) *(1+x) *(x^2-x+1) *(x^3+x^2-1) *(x^6-x^2-1) *(x^12+x^10+x^8+2*x^6+x^4+1) ).
a(2*k) = (A003520(k))^2,
a(2*k+1) = A003520(k) * A003520(k+1)

A224810 Subsets of {1,2,...,n-6} without differences equal to 3 or 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 96, 144, 216, 324, 486, 729, 1053, 1521, 2197, 3211, 4693, 6859, 10108, 14896, 21952, 32144, 47068, 68921, 100860, 147600, 216000, 316800, 464640, 681472, 998976
Offset: 0

Author

Vladimir Baltic, May 16 2013

Keywords

Comments

Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=3, r=6, I={-2,-1,1,2,3,4,5}.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x^3 - x^4 - x^5 + x^6 - 2*x^7 - x^8 - x^9 - 2*x^10 - x^12 - x^13 - x^15)/((1 - x)*(1 + x + x^2)*(1 - x - x^3)*(1 + 3*x^3 + 7*x^6 + 9*x^9 + 7*x^12 + 3*x^15 + x^18)), {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2017 *)
  • PARI
    x='x+O('x^50); Vec((1 + x^3 - x^4 - x^5 + x^6 - 2*x^7 - x^8 - x^9 - 2*x^10 - x^12 - x^13 - x^15)/((1 - x)*(1 + x + x^2)*(1 - x - x^3)*(1 + 3*x^3 + 7*x^6 + 9*x^9 + 7*x^12 + 3*x^15 + x^18))) \\ G. C. Greubel, Apr 30 2017

Formula

a(3*k) = (A000930(k))^3.
a(3*k+1) = (A000930(k))^2 * A000930(k+1).
a(3*k+2) = A000930(k) * (A000930(k+1))^2.
a(n) = a(n-1) -a(n-3) +2*a(n-4) -2*a(n-6) +4*a(n-7) +2*a(n-9) +2*a(n-10) +4*a(n-12) -2*a(n-13) +2*a(n-15) -4*a(n-16) -2*a(n-18) -2*a(n-19) -a(n-21) -a(n-22) -a(n-24)
G.f.: (1+x^3-x^4-x^5+x^6-2*x^7-x^8-x^9-2*x^10-x^12-x^13-x^15) / ((1-x)*(1+x+x^2)*(1-x-x^3)*(1+3*x^3+7*x^6+9*x^9+7*x^12+3*x^15+x^18))

A224809 Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=2, r=4, I={-1,1,2,3}.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 24, 36, 54, 81, 117, 169, 247, 361, 532, 784, 1148, 1681, 2460, 3600, 5280, 7744, 11352, 16641, 24381, 35721, 52353, 76729, 112462, 164836, 241570, 354025, 518840, 760384, 1114416, 1633284
Offset: 0

Author

Vladimir Baltic, May 16 2013

Keywords

Comments

Number of subsets of {1,2,...,n-4} without differences equal to 2 or 4.

Programs

  • Mathematica
    CoefficientList[Series[-(x-1)*(1+x+x^2)/((x^3+x-1)*(x^6-x^4-1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
  • PARI
    N = 42; x = 'x + O('x^N);
    Vec(Ser(-(x-1)*(1+x+x^2)/((x^3+x-1)*(x^6-x^4-1))))  \\ Gheorghe Coserea, Nov 11 2016

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-9).
G.f.: -(x-1)*(1+x+x^2) / ( (x^3+x-1)*(x^6-x^4-1) ).
a(2*k) = (A000930(k))^2, a(2*k+1) = A000930(k) * A000930(k+1).

A224808 Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=2, r=6, I={-1,1,2,3,4,5}.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 35, 49, 70, 100, 140, 196, 266, 361, 494, 676, 936, 1296, 1800, 2500, 3450, 4761, 6555, 9025, 12445, 17161, 23711, 32761, 45250, 62500, 86250, 119025, 164220, 226576, 312732, 431649, 595899, 822649, 1135564, 1567504, 2163456, 2985984
Offset: 0

Author

Vladimir Baltic, Apr 18 2013

Keywords

Comments

a(n) is the number of subsets of {1,2,...,n-6} without differences equal to 2, 4 or 6.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^5 - x^8)/(1 - x - x^5 + x^6 - x^7 - 2*x^8 + x^9 - x^10 + x^13 + x^16), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
    LinearRecurrence[{1,0,0,0,1,-1,1,2,-1,1,0,0,-1,0,0,-1},{1,1,1,1,1,1,1,2,4,6,9,12,16,20,25,35},60] (* Harvey P. Dale, Dec 02 2024 *)
  • PARI
    x='x+O('x^66); Vec((1-x^5-x^8)/(1-x-x^5+x^6-x^7-2*x^8+x^9-x^10+x^13+x^16) ) \\ Joerg Arndt, Apr 19 2013

Formula

a(n) = a(n-1) + a(n-5) - a(n-6) + a(n-7) + 2*a(n-8) - a(n-9) + a(n-10) - a(n-13) + a(n-16).
G.f.: (1-x^5-x^8)/(1-x-x^5+x^6-x^7-2*x^8+x^9-x^10+x^13+x^16).
a(2*k-2) = (A003269(k))^2,
a(2*k-1) = A003269(k) * A003269(k+1)

A217694 Number of n-variations of the set {1,2,...,n+1} satisfying p(i)-i in {-2,0,2}, i=1..n (an n-variation of the set N_{n+s} = {1,2,...,n+s} is any 1-to-1 mapping p from the set N_n = {1,2,...,n} into N_{n+s} = {1,2,...,n+s}).

Original entry on oeis.org

1, 1, 2, 4, 8, 12, 21, 35, 60, 96, 160, 260, 429, 693, 1134, 1836, 2992, 4840, 7865, 12727, 20648, 33408, 54144, 87608, 141897, 229593, 371722, 601460, 973560, 1575252, 2549421, 4125051, 6675460, 10801120, 17478176, 28280284, 45761045, 74042925, 119808150
Offset: 0

Author

Vladimir Baltic, Oct 11 2012

Keywords

Programs

  • Mathematica
    LinearRecurrence[{1,1,0,2,-2,-1,-1,-1},{1,1,2,4,8,12,21,35},40] (* Harvey P. Dale, Feb 29 2020 *)

Formula

Recurrence: a(n)=a(n-1)+a(n-2)+2*a(n-4)-2*a(n-5)-a(n-6)-a(n-7)-a(n-8).
G.f.: (1+x^3)/(1-x-x^2-2*x^4+2*x^5+x^6+x^7+x^8) = (1+x)*(1-x+x^2)/((1-x-x^2)*(1+x^2)*(1-x^2-x^4)).

A086113 Number of 3 X n (0,1) matrices such that each row and each column is nondecreasing or nonincreasing.

Original entry on oeis.org

6, 36, 102, 216, 390, 636, 966, 1392, 1926, 2580, 3366, 4296, 5382, 6636, 8070, 9696, 11526, 13572, 15846, 18360, 21126, 24156, 27462, 31056, 34950, 39156, 43686, 48552, 53766, 59340, 65286, 71616, 78342, 85476, 93030, 101016, 109446, 118332
Offset: 1

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[6, 36, 102, 216]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 24 2012
  • Mathematica
    CoefficientList[Series[6*(1+2x-x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 24 2012 *)

Formula

a(n) = 2*n*(n^2 + 3*n - 1) = 2*n*A014209(n). More generally, number of m X n (0, 1) matrices such that each row and each column is increasing or decreasing is 2*n*(2*binomial(n+m-1, n)-m) = 2*m*(2*binomial(m+n-1, m)-n).
G.f.: 6*x*(1 + 2*x - x^2)/(1-x)^4. - Vincenzo Librandi, Jun 24 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 24 2012