A224809
Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=2, r=4, I={-1,1,2,3}.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 24, 36, 54, 81, 117, 169, 247, 361, 532, 784, 1148, 1681, 2460, 3600, 5280, 7744, 11352, 16641, 24381, 35721, 52353, 76729, 112462, 164836, 241570, 354025, 518840, 760384, 1114416, 1633284
Offset: 0
- Gheorghe Coserea, Table of n, a(n) for n = 0..4096
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,1,1,0,0,-1).
-
CoefficientList[Series[-(x-1)*(1+x+x^2)/((x^3+x-1)*(x^6-x^4-1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
-
N = 42; x = 'x + O('x^N);
Vec(Ser(-(x-1)*(1+x+x^2)/((x^3+x-1)*(x^6-x^4-1)))) \\ Gheorghe Coserea, Nov 11 2016
A354666
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k-1) + 2*T(n-2,k-2) - T(n-3,k-1) - T(n-3,k-2) + T(n-4,k-1) + T(n-4,k-2) - T(n-4,k-3) - T(n-4,k-4) + delta(n,0)*delta(k,0) - delta(n,2)*(delta(k,1) + delta(k,2)), T(n
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 4, 0, 1, 1, 2, 6, 0, 3, 0, 1, 3, 9, 4, 9, 0, 1, 1, 4, 12, 10, 18, 0, 4, 0, 1, 5, 16, 21, 36, 10, 16, 0, 1, 1, 6, 21, 36, 60, 30, 40, 0, 5, 0, 1, 7, 27, 57, 100, 81, 100, 20, 25, 0, 1, 1, 8, 34, 84, 158, 168
Offset: 0
Triangle begins:
1;
1, 0;
1, 0, 1;
1, 0, 2, 0;
1, 1, 4, 0, 1;
1, 2, 6, 0, 3, 0;
1, 3, 9, 4, 9, 0, 1;
1, 4, 12, 10, 18, 0, 4, 0;
1, 5, 16, 21, 36, 10, 16, 0, 1;
1, 6, 21, 36, 60, 30, 40, 0, 5, 0;
1, 7, 27, 57, 100, 81, 100, 20, 25, 0, 1;
1, 8, 34, 84, 158, 168, 200, 70, 75, 0, 6, 0;
1, 9, 42, 118, 243, 322, 400, 231, 225, 35, 36, 0, 1;
...
Sums over k of T(n-3*k,k) are
A224808.
Other members of the family of triangles:
A007318 (m=1,t=2),
A059259 (m=2,t=2),
A350110 (m=3,t=2),
A350111 (m=4,t=2),
A350112 (m=5,t=2),
A354665 (m=2,t=3),
A354667 (m=2,t=5),
A354668 (m=3,t=3).
A224811
Number of subsets of {1,2,...,n-8} without differences equal to 2, 4, 6 or 8.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 48, 64, 88, 121, 165, 225, 300, 400, 520, 676, 884, 1156, 1530, 2025, 2700, 3600, 4800, 6400, 8480, 11236, 14840, 19600, 25900, 34225, 45325, 60025, 79625, 105625, 140075, 185761, 246101, 326041, 431676, 571536, 756756, 1002001, 1327326, 1758276, 2329782, 3087049, 4090296, 5419584
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 1, -1, 1, -1, 1, 2, -1, 1, 0, 0, -2, 1, -2, 0, 0, -1, 0, 0, 0, 0, 1).
-
CoefficientList[Series[(1 - x^10 - x^5 - x^7 + x^15)/((1 - x)*(1 + x)*(x^2 - x + 1)*(x^3 + x^2 - 1)*(x^6 - x^2 - 1)*(x^12 + x^10 + x^8 + 2*x^6 + x^4 + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
-
x='x+O('x^50); Vec((1-x^10-x^5-x^7+x^15)/((1-x)*(1+x)*(x^2-x+1)*( x^3+x^2-1)*(x^6-x^2-1)*(x^12+x^10+x^8+2*x^6+x^4+1) )) \\ G. C. Greubel, Oct 28 2017
A224815
Number of subsets of {1,2,...,n-8} without differences equal to 4 or 8.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 24, 36, 54, 81, 108, 144, 192, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 9477, 13689, 19773, 28561, 41743, 61009, 89167, 130321, 192052, 283024, 417088, 614656, 900032, 1317904, 1929788, 2825761
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-13
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, -2, 2, 0, 2, -6, 6, 0, 6, 1, -1, 0, -1, 13, -13, 0, -13, 15, -15, 0, -15, -6, 6, 0, 6, 3, -3, 0, -3, -2, 2, 0, 2, 8, -8, 0, -8, 3, -3, 0, -3, -1, 1, 0, 1, -1, 1, 0, 1).
-
CoefficientList[Series[(1 - x^3 + x^4 - x^5 - x^6 - 3*x^7 + 3*x^8 - 2*x^9 - x^10 - 5*x^11 - 3*x^12 - 2*x^13 + 3*x^15 - 3*x^16 - 3*x^18 + 3*x^19 - 3*x^20 + 3*x^21 + 3*x^23 + 6*x^24 - 3*x^25 - 2*x^26 - 4*x^27 - x^29 - x^30 - 2*x^31 - x^32 + x^33 + x^35 - x^36 + x^37 + x^39)/((1 - x - x^3)*(1 + x^4 + x^6)*(1 + x^4 - x^6)*(1 - x^4 - x^12)*(1 + x^4 + 6*x^8 - 3*x^12 + 2*x^20 + x^24)), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
A224810
Subsets of {1,2,...,n-6} without differences equal to 3 or 6.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 96, 144, 216, 324, 486, 729, 1053, 1521, 2197, 3211, 4693, 6859, 10108, 14896, 21952, 32144, 47068, 68921, 100860, 147600, 216000, 316800, 464640, 681472, 998976
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135
- Index entries for linear recurrences with constant coefficients, signature (1, 0, -1, 2, 0, -2, 4, 0, 2, 2, 0, 4, -2, 0, 2, -4, 0, -2, -2, 0, -1, -1, 0, -1).
-
CoefficientList[Series[(1 + x^3 - x^4 - x^5 + x^6 - 2*x^7 - x^8 - x^9 - 2*x^10 - x^12 - x^13 - x^15)/((1 - x)*(1 + x + x^2)*(1 - x - x^3)*(1 + 3*x^3 + 7*x^6 + 9*x^9 + 7*x^12 + 3*x^15 + x^18)), {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2017 *)
-
x='x+O('x^50); Vec((1 + x^3 - x^4 - x^5 + x^6 - 2*x^7 - x^8 - x^9 - 2*x^10 - x^12 - x^13 - x^15)/((1 - x)*(1 + x + x^2)*(1 - x - x^3)*(1 + 3*x^3 + 7*x^6 + 9*x^9 + 7*x^12 + 3*x^15 + x^18))) \\ G. C. Greubel, Apr 30 2017
A224814
Number of subsets of {1,2,...,n-9} without differences equal to 3, 6 or 9.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 80, 100, 125, 175, 245, 343, 490, 700, 1000, 1400, 1960, 2744, 3724, 5054, 6859, 9386, 12844, 17576, 24336, 33696, 46656, 64800, 90000, 125000, 172500, 238050, 328509, 452295, 622725, 857375, 1182275, 1630295, 2248091, 3106141, 4291691, 5929741, 8190250, 11312500, 15625000, 21562500
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-13
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 1, 0, -1, 1, 0, -3, 4, 0, 5, -2, 0, 3, -8, 0, 1, -4, 0, 3, -4, 0, -3, 0, 0, -5, 8, 0, 7, -2, 0, -9, 2, 0, 5, 4, 0, 1, -6, 0, -3, 2, 0, 2, 1, 0, -1, -1, 0, 0, 1).
-
CoefficientList[Series[(1 - x^4 - x^5 - x^7 - x^8 + 2*x^9 - x^10 - 3*x^12 - x^13 - 2*x^15 + 3*x^16 + 3*x^17 + 2*x^18 - x^20 - 4*x^21 + x^23 + 3*x^24 + 3*x^25 + x^27 - 4*x^28 - x^29 - 2*x^30 + x^31 + 2*x^33 +x^34 - x^36 - x^37 + x^40)/((1 - x - x^4)*(1 - x^9 - x^12)*(1 + x^6 + 4*x^9 - 4*x^12 - 2*x^15 + 4*x^18 - 3*x^21 - 3*x^24 + 7*x^27 - 6*x^30 + 3*x^33 - x^36)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
-
x='x+O('x^50); Vec((1 -x^4 -x^5 -x^7 -x^8 +2*x^9 -x^10 -3*x^12 -x^13 -2*x^15 +3*x^16 +3*x^17 +2*x^18 -x^20 -4*x^21 +x^23 +3*x^24 +3*x^25 +x^27 -4*x^28 -x^29 -2*x^30 +x^31 +2*x^33 +x^34 -x^36 -x^37 +x^40 )/((1-x-x^4)*(1-x^9-x^12)*(1 +x^6 +4*x^9 -4*x^12 -2*x^15 +4*x^18 -3*x^21 -3*x^24 +7*x^27 -6*x^30 +3*x^33 -x^36))) \\ G. C. Greubel, Oct 28 2017
A224812
Number of subsets of {1,2,...,n-10} without differences equal to 2, 4, 6, 8 or 10.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 63, 81, 108, 144, 192, 256, 336, 441, 567, 729, 918, 1156, 1462, 1849, 2365, 3025, 3905, 5041, 6532, 8464, 10948, 14161, 18207, 23409, 29988, 38416, 49196, 63001, 80822, 103684, 133308, 171396, 220662, 284089, 365638, 470596, 605052, 777924, 999306, 1283689, 1648515
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-13
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, 3, -2, 2, -1, 1, 0, 0, -2, 1, -2, 0, 0, -3, 1, -2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1).
-
CoefficientList[Series[-(x + 1)*(x^23 - x^22 + x^21 - x^20 + x^19 - x^13 + x^12 - 3*x^11 + 3*x^10 - 3*x^9 + 2*x^8 - 2*x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/((x^6 + x - 1)*(x^30 + x^24 - 2*x^20 - 2*x^18 - x^14 - 2*x^12 + x^10 + x^8 + x^6 + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
-
x='x+O('x^50); Vec(-(x + 1)*(x^23 - x^22 + x^21 - x^20 + x^19 - x^13 + x^12 - 3*x^11 + 3*x^10 - 3*x^9 + 2*x^8 - 2*x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/((x^6 + x - 1)*(x^30 + x^24 - 2*x^20 - 2*x^18 - x^14 - 2*x^12 + x^10 + x^8 + x^6 + 1))) \\ G. C. Greubel, Oct 28 2017
A224813
Number of subsets of {1,2,...,n-12} without differences equal to 2, 4, 6, 8, 10 or 12.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 80, 100, 130, 169, 221, 289, 374, 484, 616, 784, 980, 1225, 1505, 1849, 2279, 2809, 3498, 4356, 5478, 6889, 8715, 11025, 13965, 17689, 22344, 28224, 35448, 44521, 55704, 69696, 87120, 108900, 136290, 170569, 213934, 268324, 337218, 423801, 533169, 670761, 843570
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-13
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, 1, 3, -2, 2, -1, 1, 0, 0, -3, 2, -4, 2, -3, 0, 0, -3, 1, -2, 0, 0, 0, 0, 3, -1, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1).
-
CoefficientList[Series[-(-1 + x^7 + x^9 + x^11 + 2*x^14 + x^16 - 2*x^21 - 2*x^23 - x^28 + x^35)/((x^7 + x - 1)*(x^42 - x^36 - 2*x^30 - 3*x^28 + 2*x^24 + 2*x^22 + x^18 + 2*x^16 + 3*x^14 - x^12 - x^10 - x^8 - 1)), {x, 0, 1000}], x] (* G. C. Greubel, Oct 28 2017 *)
-
x='x+O('x^50); Vec(-(-1 + x^7 + x^9 + x^11 + 2*x^14 + x^16 - 2*x^21 - 2*x^23 - x^28 + x^35)/((x^7 + x - 1)*(x^42 - x^36 - 2*x^30 - 3*x^28 + 2*x^24 + 2*x^22 + x^18 + 2*x^16 + 3*x^14 - x^12 - x^10 - x^8 - 1))) \\ G. C. Greubel, Oct 28 2017
A387020
Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-2,0,5} for all i=1,...,n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 16, 20, 25, 34, 46, 67, 94, 130, 175, 231, 305, 400, 540, 729, 999, 1363, 1855, 2510, 3370, 4531, 6070, 8180, 11026, 14921, 20197, 27322, 36940, 49820, 67204, 90528, 122091, 164686, 222344, 300316, 405574, 547768, 739291, 997794, 1346130
Offset: 0
a(7) = 2: 1234567, 6712345.
a(8) = 3: 12345678, 17823456, 67123458.
- D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), North-Holland, Amsterdam, 1970, pp. 755-770.
- Vladimir Baltić, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics, 4(1) (2010), 119-135.
- Kenneth Edwards and Michael A. Allen, Strongly restricted permutations and tiling with fences, Discrete Applied Mathematics, 187 (2015), 82-90.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,3,-2,2,-1,1,0,0,-3,1,-2,0,0,0,0,1).
Sequences for numbers of permutations such that p(i)-i is in {-2,0,d} for d=1,..,8:
A000930,
A006498,
A080000,
A224809,
A387020,
A224808,
A387021,
A224811.
-
CoefficientList[Series[(1 - 2*x^7 - x^9 + x^14)/(1 - x - 3*x^7 + 2*x^8 - 2*x^9 + x^10 - x^11 + 3*x^14 - x^15 + 2*x^16 - x^21),{x,0,51}],x]
LinearRecurrence[{1, 0, 0, 0, 0, 0, 3, -2, 2, -1, 1, 0, 0, -3, 1, -2, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 16, 20, 25, 34, 46, 67, 94, 130}, 52]
A387021
Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-2,0,7} for all i=1,...,n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 25, 30, 36, 46, 59, 81, 109, 153, 207, 277, 361, 463, 589, 743, 949, 1211, 1589, 2083, 2773, 3670, 4861, 6388, 8344, 10848, 14019, 18166, 23479, 30556, 39762, 52049, 68125, 89345, 117034, 153078, 199979, 260572, 339546, 441669, 575341
Offset: 0
a(9)=2: 123456789, 891234567.
- D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), North-Holland, Amsterdam, 1970, pp. 755-770.
- V. Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics, 4(1) (2010), 119-135.
- Kenneth Edwards and Michael A. Allen, Strongly restricted permutations and tiling with fences, Discrete Applied Mathematics, 187 (2015), 82-90.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,4,-3,3,-2,2,-1,1,0,0,-6,3,-6,2,-3,0,0,0,0,4,-1,3,0,0,0,0,0,0,-1).
Sequences for numbers of permutations such that p(i)-i is in {-2,0,d} for d=1,...,8:
A000930,
A006498,
A080000,
A224809,
A387020,
A224808,
A387021,
A224811.
-
CoefficientList[Series[(1 - 3*x^9 - 2*x^11 - x^13 + 3*x^18 + 2*x^20 - x^27)/ (1 - x - 4*x^9 + 3*x^10 - 3*x^11 + 2*x^12 - 2*x^13 + x^14 - x^15 + 6*x^18 - 3*x^19 + 6*x^20 - 2*x^21 + 3*x^22 - 4*x^27 + x^28 - 3*x^29 + x^36),{x,0,55}],x]
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 4, -3, 3, -2, 2, -1, 1, 0, 0, -6, 3, -6, 2, -3, 0, 0, 0, 0, 4, -1, 3, 0, 0, 0, 0, 0, 0, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 25, 30, 36, 46, 59, 81, 109, 153, 207, 277, 361, 463, 589, 743, 949, 1211, 1589, 2083, 2773}, 56]
Showing 1-10 of 10 results.
Comments