A376033 Number A(n,k) of binary words of length n avoiding distance (i+1) between "1" digits if the i-th bit is set in the binary representation of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 2, 1, 2, 4, 1, 2, 3, 8, 1, 2, 4, 5, 16, 1, 2, 3, 6, 8, 32, 1, 2, 4, 4, 9, 13, 64, 1, 2, 3, 8, 6, 15, 21, 128, 1, 2, 4, 5, 12, 9, 25, 34, 256, 1, 2, 3, 6, 7, 18, 13, 40, 55, 512, 1, 2, 4, 4, 8, 11, 27, 19, 64, 89, 1024, 1, 2, 3, 8, 5, 11, 16, 45, 28, 104, 144, 2048
Offset: 0
Examples
A(6,6) = 17: 000000, 000001, 000010, 000011, 000100, 000110, 001000, 001100, 010000, 010001, 011000, 100000, 100001, 100010, 100011, 110000, 110001 because 6 = 110_2 and no two "1" digits have distance 2 or 3. A(6,7) = 10: 000000, 000001, 000010, 000100, 001000, 010000, 010001, 100000, 100001, 100010. A(7,7) = 14: 0000000, 0000001, 0000010, 0000100, 0001000, 0010000, 0010001, 0100000, 0100001, 0100010, 1000000, 1000001, 1000010, 1000100. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, ... 8, 5, 6, 4, 8, 5, 6, 4, 8, 5, ... 16, 8, 9, 6, 12, 7, 8, 5, 16, 8, ... 32, 13, 15, 9, 18, 11, 11, 7, 24, 11, ... 64, 21, 25, 13, 27, 16, 17, 10, 36, 17, ... 128, 34, 40, 19, 45, 25, 27, 14, 54, 25, ... 256, 55, 64, 28, 75, 37, 41, 19, 81, 37, ... 512, 89, 104, 41, 125, 57, 60, 26, 135, 57, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
Crossrefs
Columns k=0-20 give: A000079, A000045(n+2), A006498(n+2), A000930(n+2), A006500, A130137, A079972(n+3), A003269(n+4), A031923(n+1), A263710(n+1), A224809(n+4), A317669(n+4), A351873, A351874, A121832(n+4), A003520(n+4), A208742, A374737, A375977, A375980, A375978.
Main diagonal gives A376091.
A(n,2^k-1) gives A141539.
A(2^n-1,2^n-1) gives A376697.
A(n,2^k) gives A209435.
Programs
-
Maple
h:= proc(n) option remember; `if`(n=0, 1, 2^(1+ilog2(n))) end: b:= proc(n, k, t) option remember; `if`(n=0, 1, add(`if`(j=1 and Bits[And](t, k)>0, 0, b(n-1, k, irem(2*t+j, h(k)))), j=0..1)) end: A:= (n, k)-> b(n, k, 0): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
PARI
step(v,b)={vector(#v, i, my(j=(i-1)>>1); if(bittest(i-1,0), if(bitand(b,j)==0, v[1+j], 0), v[1+j] + v[1+#v/2+j]));} col(n,k)={my(v=vector(2^(1+logint(k,2))), r=vector(1+n)); v[1]=r[1]=1; for(i=1, n, v=step(v,k); r[1+i]=vecsum(v)); r} A(n,k)=if(k==0, 2^n, col(n,k)[n+1]) \\ Andrew Howroyd, Oct 03 2024
Formula
A(n,k) = A(n,k+ceiling(2^(n-1))).
A(n,ceiling(2^(n-1))-1) = n+1.
A(n,ceiling(2^(n-2))) = ceiling(3*2^(n-2)) = A098011(n+2).
Comments