cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A224808 Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=2, r=6, I={-1,1,2,3,4,5}.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 35, 49, 70, 100, 140, 196, 266, 361, 494, 676, 936, 1296, 1800, 2500, 3450, 4761, 6555, 9025, 12445, 17161, 23711, 32761, 45250, 62500, 86250, 119025, 164220, 226576, 312732, 431649, 595899, 822649, 1135564, 1567504, 2163456, 2985984
Offset: 0

Views

Author

Vladimir Baltic, Apr 18 2013

Keywords

Comments

a(n) is the number of subsets of {1,2,...,n-6} without differences equal to 2, 4 or 6.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^5 - x^8)/(1 - x - x^5 + x^6 - x^7 - 2*x^8 + x^9 - x^10 + x^13 + x^16), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
    LinearRecurrence[{1,0,0,0,1,-1,1,2,-1,1,0,0,-1,0,0,-1},{1,1,1,1,1,1,1,2,4,6,9,12,16,20,25,35},60] (* Harvey P. Dale, Dec 02 2024 *)
  • PARI
    x='x+O('x^66); Vec((1-x^5-x^8)/(1-x-x^5+x^6-x^7-2*x^8+x^9-x^10+x^13+x^16) ) \\ Joerg Arndt, Apr 19 2013

Formula

a(n) = a(n-1) + a(n-5) - a(n-6) + a(n-7) + 2*a(n-8) - a(n-9) + a(n-10) - a(n-13) + a(n-16).
G.f.: (1-x^5-x^8)/(1-x-x^5+x^6-x^7-2*x^8+x^9-x^10+x^13+x^16).
a(2*k-2) = (A003269(k))^2,
a(2*k-1) = A003269(k) * A003269(k+1)

A224809 Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=2, r=4, I={-1,1,2,3}.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 24, 36, 54, 81, 117, 169, 247, 361, 532, 784, 1148, 1681, 2460, 3600, 5280, 7744, 11352, 16641, 24381, 35721, 52353, 76729, 112462, 164836, 241570, 354025, 518840, 760384, 1114416, 1633284
Offset: 0

Views

Author

Vladimir Baltic, May 16 2013

Keywords

Comments

Number of subsets of {1,2,...,n-4} without differences equal to 2 or 4.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x-1)*(1+x+x^2)/((x^3+x-1)*(x^6-x^4-1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
  • PARI
    N = 42; x = 'x + O('x^N);
    Vec(Ser(-(x-1)*(1+x+x^2)/((x^3+x-1)*(x^6-x^4-1))))  \\ Gheorghe Coserea, Nov 11 2016

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-9).
G.f.: -(x-1)*(1+x+x^2) / ( (x^3+x-1)*(x^6-x^4-1) ).
a(2*k) = (A000930(k))^2, a(2*k+1) = A000930(k) * A000930(k+1).

A224811 Number of subsets of {1,2,...,n-8} without differences equal to 2, 4, 6 or 8.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 48, 64, 88, 121, 165, 225, 300, 400, 520, 676, 884, 1156, 1530, 2025, 2700, 3600, 4800, 6400, 8480, 11236, 14840, 19600, 25900, 34225, 45325, 60025, 79625, 105625, 140075, 185761, 246101, 326041, 431676, 571536, 756756, 1002001, 1327326, 1758276, 2329782, 3087049, 4090296, 5419584
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=8, I={-2,0,8}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^10 - x^5 - x^7 + x^15)/((1 - x)*(1 + x)*(x^2 - x + 1)*(x^3 + x^2 - 1)*(x^6 - x^2 - 1)*(x^12 + x^10 + x^8 + 2*x^6 + x^4 + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-x^10-x^5-x^7+x^15)/((1-x)*(1+x)*(x^2-x+1)*( x^3+x^2-1)*(x^6-x^2-1)*(x^12+x^10+x^8+2*x^6+x^4+1) )) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-5) -a(n-6) +a(n-7) -a(n-8) +a(n-9) +2*a(n-10) -a(n-11) +a(n-12) -2*a(n-15) +a(n-16) -2*a(n-17) -a(n-20) +a(n-25).
G.f.: (1-x^10-x^5-x^7+x^15) / ( (1-x) *(1+x) *(x^2-x+1) *(x^3+x^2-1) *(x^6-x^2-1) *(x^12+x^10+x^8+2*x^6+x^4+1) ).
a(2*k) = (A003520(k))^2,
a(2*k+1) = A003520(k) * A003520(k+1)

A224815 Number of subsets of {1,2,...,n-8} without differences equal to 4 or 8.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 24, 36, 54, 81, 108, 144, 192, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 9477, 13689, 19773, 28561, 41743, 61009, 89167, 130321, 192052, 283024, 417088, 614656, 900032, 1317904, 1929788, 2825761
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=4, r=8, I={-4,0,8}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^3 + x^4 - x^5 - x^6 - 3*x^7 + 3*x^8 - 2*x^9 - x^10 - 5*x^11 - 3*x^12 - 2*x^13 + 3*x^15 - 3*x^16 - 3*x^18 + 3*x^19 - 3*x^20 + 3*x^21 + 3*x^23 + 6*x^24 - 3*x^25 - 2*x^26 - 4*x^27 - x^29 - x^30 - 2*x^31 - x^32 + x^33 + x^35 - x^36 + x^37 + x^39)/((1 - x - x^3)*(1 + x^4 + x^6)*(1 + x^4 - x^6)*(1 - x^4 - x^12)*(1 + x^4 + 6*x^8 - 3*x^12 + 2*x^20 + x^24)), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)

Formula

a(n) = a(n-1)+a(n-3)-2*a(n-4)+2*a(n-5)+2*a(n-7)-6*a(n-8)+6*a(n-9)+6*a(n-11) +a(n-12)-a(n-13)-a(n-15)+13*a(n-16)-13*a(n-17)-13*a(n-19)+15*a(n-20)-15*a(n-21)-15*a(n-23)-6*a(n-24)+6*a(n-25)+6*a(n-27)+3*a(n-28)-3*a(n-29)-3*a(n-31)-2*a(n-32)+2*a(n-33)+2*a(n-35)+8*a(n-36)-8*a(n-37)-8*a(n-39)+3*a(n-40)-3*a(n-41)-3*a(n-43)-a(n-44)+a(n-45)+a(n-47)-a(n-48)+a(n-49)+a(n-51).
G.f.: ( 1-x^3+x^4-x^5-x^6-3*x^7+3*x^8-2*x^9-x^10-5*x^11-3*x^12-2*x^13 +3*x^15-3*x^16-3*x^18+3*x^19-3*x^20+3*x^21+3*x^23+6*x^24-3*x^25-2*x^26-4*x^27-x^29-x^30-2*x^31-x^32+x^33+x^35-x^36+x^37+x^39 ) / ((1-x-x^3)*(1+x^4+x^6)*(1+x^4-x^6)*(1-x^4-x^12)*(1+x^4+6*x^8-3*x^12+2*x^20+x^24)).
a(4*k) = (A000930(k))^4,
a(4*k+1) = (A000930(k))^3 * A000930(k+1),
a(4*k+2) = (A000930(k))^2 * (A000930(k+1))^2,
a(4*k+3) = A000930(k) * (A000930(k+1))^3.

A224810 Subsets of {1,2,...,n-6} without differences equal to 3 or 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 96, 144, 216, 324, 486, 729, 1053, 1521, 2197, 3211, 4693, 6859, 10108, 14896, 21952, 32144, 47068, 68921, 100860, 147600, 216000, 316800, 464640, 681472, 998976
Offset: 0

Views

Author

Vladimir Baltic, May 16 2013

Keywords

Comments

Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=3, r=6, I={-2,-1,1,2,3,4,5}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + x^3 - x^4 - x^5 + x^6 - 2*x^7 - x^8 - x^9 - 2*x^10 - x^12 - x^13 - x^15)/((1 - x)*(1 + x + x^2)*(1 - x - x^3)*(1 + 3*x^3 + 7*x^6 + 9*x^9 + 7*x^12 + 3*x^15 + x^18)), {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2017 *)
  • PARI
    x='x+O('x^50); Vec((1 + x^3 - x^4 - x^5 + x^6 - 2*x^7 - x^8 - x^9 - 2*x^10 - x^12 - x^13 - x^15)/((1 - x)*(1 + x + x^2)*(1 - x - x^3)*(1 + 3*x^3 + 7*x^6 + 9*x^9 + 7*x^12 + 3*x^15 + x^18))) \\ G. C. Greubel, Apr 30 2017

Formula

a(3*k) = (A000930(k))^3.
a(3*k+1) = (A000930(k))^2 * A000930(k+1).
a(3*k+2) = A000930(k) * (A000930(k+1))^2.
a(n) = a(n-1) -a(n-3) +2*a(n-4) -2*a(n-6) +4*a(n-7) +2*a(n-9) +2*a(n-10) +4*a(n-12) -2*a(n-13) +2*a(n-15) -4*a(n-16) -2*a(n-18) -2*a(n-19) -a(n-21) -a(n-22) -a(n-24)
G.f.: (1+x^3-x^4-x^5+x^6-2*x^7-x^8-x^9-2*x^10-x^12-x^13-x^15) / ((1-x)*(1+x+x^2)*(1-x-x^3)*(1+3*x^3+7*x^6+9*x^9+7*x^12+3*x^15+x^18))

A224814 Number of subsets of {1,2,...,n-9} without differences equal to 3, 6 or 9.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 80, 100, 125, 175, 245, 343, 490, 700, 1000, 1400, 1960, 2744, 3724, 5054, 6859, 9386, 12844, 17576, 24336, 33696, 46656, 64800, 90000, 125000, 172500, 238050, 328509, 452295, 622725, 857375, 1182275, 1630295, 2248091, 3106141, 4291691, 5929741, 8190250, 11312500, 15625000, 21562500
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=3, r=9, I={-3,0,9}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^4 - x^5 - x^7 - x^8 + 2*x^9 - x^10 - 3*x^12 - x^13 - 2*x^15 + 3*x^16 + 3*x^17 + 2*x^18 - x^20 - 4*x^21 + x^23 + 3*x^24 + 3*x^25 + x^27 - 4*x^28 - x^29 - 2*x^30 + x^31 + 2*x^33 +x^34 - x^36 - x^37 + x^40)/((1 - x - x^4)*(1 - x^9 - x^12)*(1 + x^6 + 4*x^9 - 4*x^12 - 2*x^15 + 4*x^18 - 3*x^21 - 3*x^24 + 7*x^27 - 6*x^30 + 3*x^33 - x^36)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec((1 -x^4 -x^5 -x^7 -x^8 +2*x^9 -x^10 -3*x^12 -x^13 -2*x^15 +3*x^16 +3*x^17 +2*x^18 -x^20 -4*x^21 +x^23 +3*x^24 +3*x^25 +x^27 -4*x^28 -x^29 -2*x^30 +x^31 +2*x^33 +x^34 -x^36 -x^37 +x^40 )/((1-x-x^4)*(1-x^9-x^12)*(1 +x^6 +4*x^9 -4*x^12 -2*x^15 +4*x^18 -3*x^21 -3*x^24 +7*x^27 -6*x^30 +3*x^33 -x^36))) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-4) -a(n-6) +a(n-7) -3*a(n-9) +4*a(n-10) +5*a(n-12) -2*a(n-13) +3*a(n-15) -8*a(n-16) +a(n-18) -4*a(n-19) +3*a(n-21) -4*a(n-22) -3*a(n-24) -5*a(n-27) +8*a(n-28) +7*a(n-30) -2*a(n-31) -9*a(n-33) +2*a(n-34) +5*a(n-36) +4*a(n-37) +a(n-39) -6*a(n-40) -3*a(n-42) +2*a(n-43) +2*a(n-45) +a(n-46) -a(n-48) -a(n-49) +a(n-52).
G.f.: (1 -x^4 -x^5 -x^7 -x^8 +2*x^9 -x^10 -3*x^12 -x^13 -2*x^15 +3*x^16 +3*x^17 +2*x^18 -x^20 -4*x^21 +x^23 +3*x^24 +3*x^25 +x^27 -4*x^28 -x^29 -2*x^30 +x^31 +2*x^33 +x^34 -x^36 -x^37 +x^40 )/((1-x-x^4)*(1-x^9-x^12)*(1 +x^6 +4*x^9 -4*x^12 -2*x^15 +4*x^18 -3*x^21 -3*x^24 +7*x^27 -6*x^30 +3*x^33 -x^36)).
a(3*k) = (A003269(k))^3,
a(3*k+1) = (A003269(k))^2 * A003269(k+1),
a(3*k+2) = A003269(k) * (A003269(k+1))^2.

A224812 Number of subsets of {1,2,...,n-10} without differences equal to 2, 4, 6, 8 or 10.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 63, 81, 108, 144, 192, 256, 336, 441, 567, 729, 918, 1156, 1462, 1849, 2365, 3025, 3905, 5041, 6532, 8464, 10948, 14161, 18207, 23409, 29988, 38416, 49196, 63001, 80822, 103684, 133308, 171396, 220662, 284089, 365638, 470596, 605052, 777924, 999306, 1283689, 1648515
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=10, I={-2,0,10}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x + 1)*(x^23 - x^22 + x^21 - x^20 + x^19 - x^13 + x^12 - 3*x^11 + 3*x^10 - 3*x^9 + 2*x^8 - 2*x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/((x^6 + x - 1)*(x^30 + x^24 - 2*x^20 - 2*x^18 - x^14 - 2*x^12 + x^10 + x^8 + x^6 + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec(-(x + 1)*(x^23 - x^22 + x^21 - x^20 + x^19 - x^13 + x^12 - 3*x^11 + 3*x^10 - 3*x^9 + 2*x^8 - 2*x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/((x^6 + x - 1)*(x^30 + x^24 - 2*x^20 - 2*x^18 - x^14 - 2*x^12 + x^10 + x^8 + x^6 + 1))) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-7) -a(n-8) +a(n-9) -a(n-10) +a(n-11) +3*a(n-12) -2*a(n-13) +2*a(n-14) -a(n-15) +a(n-16) -2*a(n-19) +a(n-20) -2*a(n-21) -3*a(n-24) +a(n-25) -2*a(n-26) +a(n-31) +a(n-36).
G.f.: -(x+1) *(x^23 -x^22 +x^21 -x^20 +x^19 -x^13 +x^12 -3*x^11 +3*x^10 -3*x^9 +2*x^8 -2*x^7 +x^6 -x^5 +x^4 -x^3 +x^2 -x +1)/ ((x^6 +x -1) *(x^30 +x^24 -2*x^20 -2*x^18 -x^14 -2*x^12 +x^10 +x^8 +x^6+1) ).
a(2*k) = (A005708(k))^2, a(2*k+1) = A005708(k) * A005708(k+1).

A224813 Number of subsets of {1,2,...,n-12} without differences equal to 2, 4, 6, 8, 10 or 12.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 80, 100, 130, 169, 221, 289, 374, 484, 616, 784, 980, 1225, 1505, 1849, 2279, 2809, 3498, 4356, 5478, 6889, 8715, 11025, 13965, 17689, 22344, 28224, 35448, 44521, 55704, 69696, 87120, 108900, 136290, 170569, 213934, 268324, 337218, 423801, 533169, 670761, 843570
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=12, I={-2,0,12}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(-1 + x^7 + x^9 + x^11 + 2*x^14 + x^16 - 2*x^21 - 2*x^23 - x^28 + x^35)/((x^7 + x - 1)*(x^42 - x^36 - 2*x^30 - 3*x^28 + 2*x^24 + 2*x^22 + x^18 + 2*x^16 + 3*x^14 - x^12 - x^10 - x^8 - 1)), {x, 0, 1000}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec(-(-1 + x^7 + x^9 + x^11 + 2*x^14 + x^16 - 2*x^21 - 2*x^23 - x^28 + x^35)/((x^7 + x - 1)*(x^42 - x^36 - 2*x^30 - 3*x^28 + 2*x^24 + 2*x^22 + x^18 + 2*x^16 + 3*x^14 - x^12 - x^10 - x^8 - 1))) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-7) -a(n-8) +a(n-9) -a(n-10) +a(n-11) -a(n-12) +a(n-13) +3*a(n-14) -2*a(n-15) +2*a(n-16) -a(n-17) +a(n-18) -3*a(n-21) +2*a(n-22) -4*a(n-23) +2*a(n-24) -3*a(n-25) -3*a(n-28) +a(n-29) -2*a(n-30) +3*a(n-35) -a(n-36) +3*a(n-37) +a(n-42) -a(n-49).
G.f.: -(-1 +x^7 +x^9 +x^11 +2*x^14 +x^16 -2*x^21 -2*x^23 -x^28 +x^35)/( (x^7+x-1) *(x^42 -x^36 -2*x^30 -3*x^28 +2*x^24 +2*x^22 +x^18 +2*x^16 +3*x^14 -x^12 -x^10 -x^8 -1) ).
a(2*k) = (A005709(k))^2, a(2*k+1) = A005709(k) * A005709(k+1).
Showing 1-8 of 8 results.