A224808 Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=2, r=6, I={-1,1,2,3,4,5}.
1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 35, 49, 70, 100, 140, 196, 266, 361, 494, 676, 936, 1296, 1800, 2500, 3450, 4761, 6555, 9025, 12445, 17161, 23711, 32761, 45250, 62500, 86250, 119025, 164220, 226576, 312732, 431649, 595899, 822649, 1135564, 1567504, 2163456, 2985984
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (April, 2010), 119-135
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1,1,2,-1,1,0,0,-1,0,0, 1).
Programs
-
Mathematica
CoefficientList[Series[(1 - x^5 - x^8)/(1 - x - x^5 + x^6 - x^7 - 2*x^8 + x^9 - x^10 + x^13 + x^16), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *) LinearRecurrence[{1,0,0,0,1,-1,1,2,-1,1,0,0,-1,0,0,-1},{1,1,1,1,1,1,1,2,4,6,9,12,16,20,25,35},60] (* Harvey P. Dale, Dec 02 2024 *)
-
PARI
x='x+O('x^66); Vec((1-x^5-x^8)/(1-x-x^5+x^6-x^7-2*x^8+x^9-x^10+x^13+x^16) ) \\ Joerg Arndt, Apr 19 2013
Comments