cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 223 results. Next

A277635 Number of 7's appearing in the sequence of consecutive natural numbers from 1 to A007908(n), where A007908 = (1, 12, 123, 1234, ...).

Original entry on oeis.org

0, 1, 22, 343, 4664, 58985, 713307, 8367637, 96022049
Offset: 1

Views

Author

Keywords

Comments

First 6 terms are the same as in A083449, also see A272525. [See the OEIS wiki page for more details. - M. F. Hasler, Dec 29 2020]
a(n) gives the number of times the digit 7 occurs in all terms of A000027 in the interval [A000027(1), A007908(n)]. - Felix Fröhlich, Oct 28 2016
The sequence was initially defined only up to n = 9 and then extended using A007908 = concat(1..n); see A277837 for the extension using A014824 (a(n) = 10 a(n-1) + n) leading to a smoother growth, in particular at powers of 10. - M. F. Hasler, Nov 01 2016, edited Dec 29 2020

Examples

			22 is the third term of the sequence because there are 22 occurrences of the digit '7' contained in numbers within the range of 1 to 123.
96022049 is the 9th term of the sequence because there are 96022049 occurrences of the digit '7' contained in numbers within the range of 1 to 123456789.
		

Crossrefs

Cf. A277830 - A277838 and A277849: analog for digits 0 .. 9, but based on A014824 instead of A083449.

Programs

  • Mathematica
    Table[a[n] = Count[Flatten@ Map[IntegerDigits, Range@ FromDigits@ Range@ n], k_ /; k == 8]; Print@ a@ n; an = a[n]; an, {n, 0, 9}] (* Michael De Vlieger, Oct 30 2016 *)
  • PARI
    print1(c=0);N=1;for(n=2,8,print1(","c+=sum(k=N+1,N=eval(Str(N,n)),#select(d->d==7,digits(k))))) \\ For illustration; more efficient code below. - M. F. Hasler, Oct 31 2016
    
  • PARI
    A277635(n, m=7)=if(n>m,A277635(n, m+1)+(m+2)*10^(n-m-1),A277830(n)-(m>n)) \\ Valid only for n <= 9. - M. F. Hasler, Nov 02 2016

A050926 Binary representation of A007908(n).

Original entry on oeis.org

1, 1100, 1111011, 10011010010, 11000000111001, 11110001001000000, 100101101011010000111, 101111000110000101001110, 111010110111100110100010101, 1011011111110111000001110000111110
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 30 1999

Keywords

Crossrefs

Formula

a(n) = A007088(A007908(n)). - Seiichi Manyama, Apr 23 2022

A353104 Base-4 representation of A007908(n).

Original entry on oeis.org

1, 30, 1323, 103102, 3000321, 132021000, 10231122013, 233012011032, 13112330310111, 23133313001300332, 101331301332300201003, 130010202012003303220320, 223313011101131330223313231, 1010202010033102302310203002202
Offset: 1

Views

Author

Seiichi Manyama, Apr 23 2022

Keywords

Crossrefs

Programs

  • Ruby
    def A(k, n)
      (1..n).map{|i| (1..i).to_a.join.to_i.to_s(k).to_i}
    end
    p A(4, 20)

Formula

a(n) = A007090(A007908(n)).

A353105 Base-5 representation of A007908(n).

Original entry on oeis.org

1, 22, 443, 14414, 343340, 12422311, 304001232, 11130030203, 223101104124, 200240443211120, 130211343340003021, 112140204001002213422, 100421133100401442024323, 40324014240311242321340224, 31241112311230113034201201130
Offset: 1

Views

Author

Seiichi Manyama, Apr 23 2022

Keywords

Crossrefs

Programs

  • Ruby
    def A(k, n)
      (1..n).map{|i| (1..i).to_a.join.to_i.to_s(k).to_i}
    end
    p A(5, 20)

Formula

a(n) = A007091(A007908(n)).

A353106 Base-6 representation of A007908(n).

Original entry on oeis.org

1, 20, 323, 5414, 133053, 2351320, 42243331, 1120335530, 20130035113, 5401014424514, 2343052550252003, 1114323133240053240, 321321022332303252301, 132140014431255340214310, 42015444551405453142112503
Offset: 1

Views

Author

Seiichi Manyama, Apr 23 2022

Keywords

Crossrefs

Programs

  • Ruby
    def A(k, n)
      (1..n).map{|i| (1..i).to_a.join.to_i.to_s(k).to_i}
    end
    p A(6, 20)

Formula

a(n) = A007092(A007908(n)).

A353107 Base-9 representation of A007908(n).

Original entry on oeis.org

1, 13, 146, 1621, 17836, 207313, 2281451, 25206070, 277266780, 34771513601, 4330564256733, 535110486286816, 65858371163036861, 8202185121837583406, 1113465620754570813253, 134741562223525280514741, 16425841240157671153405780
Offset: 1

Views

Author

Seiichi Manyama, Apr 23 2022

Keywords

Crossrefs

Programs

  • Ruby
    def A(k, n)
      (1..n).map{|i| (1..i).to_a.join.to_i.to_s(k).to_i}
    end
    p A(9, 20)

Formula

a(n) = A007095(A007908(n)).

A075002 a(n) = smallest k such that A007908(k) is divisible by n.

Original entry on oeis.org

1, 2, 2, 2, 5, 2, 11, 6, 8, 10, 106, 2, 11, 22, 5, 6, 21, 8, 27, 20, 11, 106, 33, 6, 25, 30, 26, 24, 31, 20, 46, 6, 113, 64, 45, 36, 21, 64, 11, 20, 3, 24, 19, 128, 35, 68, 8, 6, 53, 50, 21, 120, 83, 26, 135, 128, 27, 82, 104, 20
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Comments

Conjecture: For every n, a(n) is well-defined.
The maximum of the first 10000 terms is a(6314) = 1002902 and A007908(1002902) is a 5902910-digit number. - Rick L. Shepherd, Oct 11 2015

Examples

			a(4) = 2 since A007908(2)=12 is divisible by 4.
a(7) = 11 as 7 divides A007908(11)=1234567891011 and 7 does not divide any smaller concatenations.
		

Crossrefs

Cf. A007908.

Programs

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003
Edited by Max Alekseyev, Sep 30 2015

A165770 Smallest divisor of 123...n (=A007908) larger than the preceding term.

Original entry on oeis.org

1, 2, 3, 617, 823, 1286, 9721, 14593, 32463, 1234567891, 1417414341, 2110805449, 98220894641, 205761315168520219, 8230452606740808761, 3086419727527803285379, 8755800645468945490437, 70708355728013820970883
Offset: 1

Views

Author

M. F. Hasler, Sep 30 2009

Keywords

Comments

Inspired by Layman's comment on a sequence from Angelini, cf. link.

Crossrefs

Cf. A151995.

Programs

  • PARI
    c=""; s=0; for(i=1,19, fordiv(c=eval(Str(c,i)),d, d>s || next; print1(s=d,", "); break))

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010

A072725 Integers which are exactly the concatenation of the first m numbers (A007908) divided by their sum (A000217 = m*(m+1)/2).

Original entry on oeis.org

1, 4, 823
Offset: 1

Views

Author

Henry Bottomley, Jul 06 2002

Keywords

Comments

A probability argument suggests that this sequence may be finite.

Examples

			a(1) = 1/1 =1; a(2) = 12/(1+2) = 4; a(3) = 12345/(1+2+3+4+5).
		

Crossrefs

A165771 Smallest positive integer such that a(1)+...a(n) divides 123...n (=A007908(n)).

Original entry on oeis.org

1, 1, 1, 614, 206, 463, 8435, 4872, 17870, 1234535428, 182846450, 693391108, 96110089192, 205761216947625578, 8024691291572288542, 3078189274921062476618, 5669380917941142205058, 61952555082544875480446
Offset: 1

Views

Author

M. F. Hasler, Sep 30 2009

Keywords

Comments

Without the initial term, these are the first differences of A165770.

Crossrefs

Programs

  • PARI
    c=""; s=0; for(i=1,19, fordiv(c=eval(Str(c,i)),d, d>s || next; print1(d-s,", "); s=d; break))

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010
Showing 1-10 of 223 results. Next