cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A334620 a(n) is the smallest multiple of n formed by the concatenation 1,2,3,...,k for some k.

Original entry on oeis.org

1, 12, 12, 12, 12345, 12, 1234567891011, 123456, 12345678, 12345678910, 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106, 12
Offset: 1

Views

Author

Eder Vanzei, Sep 09 2020

Keywords

Examples

			a(3) = 12, because 12 is the smallest multiple of 3 that appears in A007908.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local x,i;
    x:= 0;
    for i from 1 do
      x:= x*10^(1+ilog10(i))+i;
      if x mod n = 0 then return x fi
    od
    end proc:
    map(f, [$1..20]); # Robert Israel, Oct 25 2020
  • Mathematica
    smn[n_]:=Module[{k=1,c=1},While[!Divisible[c,n],k++;c= c*10^IntegerLength[ k]+ k];c]; Array[ smn,20] (* Harvey P. Dale, Apr 04 2022 *)
  • PARI
    a(n) = j="";for(k=1, oo, j=eval(concat(Str(j), k)); if(j%n==0, return(j)))

Formula

a(n) is the smallest multiple of n appearing in A007908.

A317636 Minimum number of consecutive positive integers starting with 1 that must be concatenated in descending order so that n divides the concatenation, or zero if n divides no such concatenation.

Original entry on oeis.org

1, 0, 2, 0, 0, 0, 2, 0, 8, 0, 14, 0, 15, 0, 0, 0, 9, 0, 5, 0, 2, 0, 16, 0, 0, 0, 26, 0, 4, 0, 25, 0, 14, 0, 0, 0, 21, 0, 15, 0, 40, 0, 67, 0, 0, 0, 78, 0, 54, 0, 9, 0, 66, 0, 0, 0, 5, 0, 25, 0, 111, 0, 44, 0, 0, 0, 161, 0, 18, 0, 49, 0, 30, 0, 0, 0, 73, 0, 15, 0, 27, 0, 27, 0, 0, 0, 41, 0, 20, 0, 54, 0, 47, 0, 0, 0, 63, 0, 18, 0, 98, 0, 102, 0, 0, 0, 3, 0, 99, 0, 21
Offset: 1

Views

Author

Martins Opmanis, Aug 02 2018

Keywords

Comments

a(n) = 0 if n is even or a multiple of 5. Empirical observation: a(n) > 0 for all other n values.

Examples

			For n=19 the a(19)=5 since 54321 = 19*2859, while 4321, 321, 21 and 1 are not multiples of 19.
		

Crossrefs

Programs

  • Mathematica
    Table[If[GCD[n, 10] == 1, Block[{k = 1}, While[Mod[FromDigits@ Flatten@ Map[IntegerDigits, Range[k, 1, -1]], n] != 0, k++]; k],0], {n, 111}] (* Michael De Vlieger, Aug 02 2018 *)
  • PARI
    a(n) = {if ((n%2) && (n%5), my(s = ""); for (k=1, oo, s = concat(Str(k), s); if (!(eval(s) % n), return (k)););); return (0);} \\ Michel Marcus, Aug 02 2018
  • Pascal
    program skaitlirinda2;
    var i : longint;
    function Atrodi(n : longint) : int64;
    var sk, koefa, naksk, rez : int64;
    begin
       sk := 1;
       naksk := 10;
       koefa := naksk mod n;
       rez := sk mod n;
       while rez>0 do
        begin
         Inc(sk);
         rez := (sk * koefa + rez) mod n;
         if sk=naksk then naksk := naksk * 10;
         koefa := (koefa*naksk) mod n;
        end;
       Atrodi := sk;
    end;
    begin
      for i:=1 to 10000 do
       begin
        if (i mod 2)*(i mod 5) > 0 then writeln(i,' ',Atrodi(i)) else writeln(i,' 0');
       end;
    end.
    
Showing 1-2 of 2 results.