A384768 Inverse binomial transform of A384674.
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Alexander R. Povolotsky's wiki page.
Alexander R. Povolotsky has authored 133 sequences. Here are the ten most recent ones:
a:= proc(n) option remember; local b, p; b:= add(a(n-i)*binomial(n, i)*(-1)^i, i=1..n); p:= nextprime(abs(b)); do if isprime(p+b) then break fi ; p:= nextprime(p) od; p end: a(0):=2: seq(a(n), n=0..32); # Alois P. Heinz, Jun 06 2025
a[n_] := a[n] = Module[{b, p}, b = Sum[a[n-i]*Binomial[n, i]*(-1)^i, {i, 1, n}]; p = NextPrime[Abs[b]]; While[True, If[PrimeQ[p+b], Break[]]; p = NextPrime[p]]; p]; a[0] = 2; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Aug 28 2025, after Alois P. Heinz *)
n A363515(n)/a(n) approximate value - ------------------- ----------------- 0 1 1 1 79/120 0.6583333333... 2 14087/20160 0.6987599206... 3 3990557/5765760 0.6921129218... 4 217474889/313657344 0.6933518158... ... From _M. F. Hasler_, Jul 07 2023: (Start) Let f[n] = (-1/4)^n*(1 - x)^(4*n+2)/(1 + x^2), the rational fraction to be integrated from 0 to 1. We have: f[0] = 1 - 2*x/(1 + x^2), with primitive F[0] = x/2 - log(1 + x^2), whence an integral equal to 1/2 - log(2), and a(0) = 2 (denominator). f[1] = -x^4/4 + (3/2)*x^3 - (7/2)*x^2 + (7/2)*x - 1/4 - 2*x/(1 + x^2), and the term-wise integration of the polynomial part gives -1/20 + 3/8 - 7/6 + 7/4 - 1/4 = 79/120, whence A363515(1) = 79 and a(1) = 120. f[2] = (1/16)*x^8 - (5/8)*x^7 + (11/4)*x^6 - (55/8)*x^5 + (83/8)*x^4 - (71/8)*x^3 + (11/4)*x^2 + (11/8)*x + 1/16 - 2*x/(1 + x^2), so the integration gives 1/144 - 5/64 + 11/28 - 55/48 + 83/40 - 71/32 + 11/12 + 11/16 + 1/16 - log(2) = 14087/20160 - log(2), whence A363515(2) = 14087 and a(2) = 20160, etc. (End)
Denominator[Simplify[Table[Log[2]+(-1)^n Integrate[(1-x)^(4n+2)/(1+x^2),{x,0,1}]/4^n,{n,0,14}]]]
n a(n)/A363516(n) approximate value - ------------------- ------------------ 0 1 1 1 79/120 0.6583333333... 2 14087/20160 0.6987599206... 3 3990557/5765760 0.6921129218... 4 217474889/313657344 0.6933518158... ... From _M. F. Hasler_, Jul 07 2023: (Start) Let f[n] = (-1/4)^n*(1 - x)^(4*n+2)/(1 + x^2), the rational fraction to be integrated from 0 to 1. We have: f[0] = 1 - 2*x/(1 + x^2), with primitive F[0] = x/2 - log(1 + x^2), whence an integral equal to 1/2 - log(2). f[1] = -x^4/4 + (3/2)*x^3 - (7/2)*x^2 + (7/2)*x - 1/4 - 2*x/(1 + x^2), and the term-wise integration of the polynomial part gives -1/20 + 3/8 - 7/6 + 7/4 - 1/4 = 79/120, whence a(1) = 79 and A363516(1) = 120. f[2] = (1/16)*x^8 - (5/8)*x^7 + (11/4)*x^6 - (55/8)*x^5 + (83/8)*x^4 - (71/8)*x^3 + (11/4)*x^2 + (11/8)*x + 1/16 - 2*x/(1 + x^2), so the integration gives 1/144 - 5/64 + 11/28 - 55/48 + 83/40 - 71/32 + 11/12 + 11/16 + 1/16 - log(2) = 14087/20160 - log(2), whence a(2) = 14087 and A363516(2) = 20160, etc. (End)
Numerator[Simplify[Table[Log[2]+(-1)^n Integrate[(1-x)^(4n+2)/(1+x^2),{x,0,1}]/4^n,{n,0,14}]]]
A363515(n) = numerator(subst(intformal(((1-x)^(4*n+2)/(-4)^n+2*x)/(1+x^2)),x,1)) \\ The argument of intformal is a polynomial that is trivially integrated over [0, 1]. - M. F. Hasler, Jul 07 2023
hmax=30; A046955=Join[{1}, Numerator[Convergents[2Pi, hmax]]]; a={}; For[h=2, h<=hmax, h++, k=Intersection[List[Floor[Last[x/.N[Solve[Pi*x^2 - 1 - Part[A046955,h] x == 0, x], 2*hmax]]]], List[Ceiling[Last[x/.N[Solve[Pi*x^2 + 1 - Part[A046955,h] x == 0, x], 2*hmax]]]]]; If[k!={} && Ceiling[k*Pi - 1/k] == Floor[k*Pi + 1/k], AppendTo[a,Part[A046955,h]]]]; a
5 is a term because A068869(5) = 1 is a square; 8 is a term because A068869(8) = 81 is a square.
isok(n) = issquare((sqrtint(n!-1)+1)^2-n!); \\ Michel Marcus, Jan 30 2023
Table begins: k=1 k=2 k=3 SquaresSum 6thPowersSum n=1: 3, 19, 22; 854 160426514 n=2: 10, 15, 23; 854 160426514 n=3: 15, 52, 65; 7154 95200890914 n=4: 36, 37, 67; 7154 95200890914 n=5: 23, 54, 73; 8774 176277173474 n=6: 33, 47, 74; 8774 176277173474 n=7: 3, 55, 80; 9434 289824641354 n=8: 32, 43, 81; 9434 289824641354 n=9: 11, 65, 78; 10430 300620262890 n=10: 37, 50, 81; 10430 300620262890 ... The elements of the row n=1: 3, 19, 22 and the elements of the row n=2: 10, 15, 23 are such that 3^2 + 19^2 + 22^2 = 10^2 + 15^2 + 23^2 and 3^6 + 19^6 + 22^6 = 10^6 + 15^6 + 23^6.
Triangle begins: k=1 k=2 k=3 ... n=1: 1; n=2: 5, 7; n=3: 9, 10, ..., 19; n=4: 97, 99, 107, ..., 283; n=5: 373, 374, 379, 381, ..., 471; ...
b:= proc(n, k) option remember; `if`(n<2, n, 2*b(n-1, k)+(k-1)*b(n-2, k)) end: a:= n-> b(n$2)/n: seq(a(n), n=1..25); # Alois P. Heinz, Oct 04 2022
Expand[Table[((1 + Sqrt[n])^n - (1 - Sqrt[n])^n)/(2*n*Sqrt[n]), {n, 1, 27}]]
from sympy import simplify, sqrt def A357580(n): return simplify(((1+sqrt(n))**n-(1-sqrt(n))**n)/(n*sqrt(n)))>>1 # Chai Wah Wu, Oct 14 2022
Comments