cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alexander R. Povolotsky

Alexander R. Povolotsky's wiki page.

Alexander R. Povolotsky has authored 133 sequences. Here are the ten most recent ones:

A384768 Inverse binomial transform of A384674.

Original entry on oeis.org

2, 3, 3, 3, 3, 5, 11, 13, 7, 5, 7, 5, 3, 17, 29, 11, 11, 17, 13, 7, 29, 3, 3, 23, 3, 17, 37, 5, 223, 5, 37, 59, 19, 23, 433, 13, 89, 7, 7, 43, 3, 61, 5, 3, 191, 61, 149, 43, 89, 71, 13, 43, 41, 79, 31, 61, 23, 73, 53, 11, 157, 197, 83, 163, 3, 47, 7, 109, 5
Offset: 0

Author

Keywords

Comments

All terms are primes.

Crossrefs

Formula

a(n) = Sum_{i=0..n} (-1)^(n-i) * A384674(i) * binomial(n,i).

A384674 Lexicographically smallest sequence of distinct primes whose inverse binomial transform consists only of primes.

Original entry on oeis.org

2, 5, 11, 23, 47, 97, 211, 491, 1187, 2857, 6659, 14879, 31891, 65929, 132469, 261059, 510031, 999721, 1988797, 4048339, 8450557, 18014701, 38902439, 84347189, 182269327, 390630769, 828123239, 1735146097, 3594509969, 7369765889, 14975024861, 30200498591, 60537295711
Offset: 0

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local b, p;
          b:= add(a(n-i)*binomial(n, i)*(-1)^i, i=1..n);
          p:= nextprime(abs(b));
          do if isprime(p+b) then break fi ;
             p:= nextprime(p)
          od; p
        end: a(0):=2:
    seq(a(n), n=0..32);  # Alois P. Heinz, Jun 06 2025
  • Mathematica
    a[n_] := a[n] = Module[{b, p}, b = Sum[a[n-i]*Binomial[n, i]*(-1)^i, {i, 1, n}]; p = NextPrime[Abs[b]]; While[True, If[PrimeQ[p+b], Break[]]; p = NextPrime[p]]; p];
    a[0] = 2;
    Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Aug 28 2025, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Jun 06 2025

A363516 Denominator of log(2) + (-1/4)^n*Integral_{x=0..1} (1 - x)^(4*n+2)/(1 + x^2) dx.

Original entry on oeis.org

1, 120, 20160, 5765760, 313657344, 14898723840, 27413651865600, 4769975424614400, 4731815621217484800, 175077177985046937600, 28712657189547697766400, 2469288518301102007910400, 12998334760337000969640345600, 86113967787232631423867289600, 5511293938382888411127506534400
Offset: 0

Author

Keywords

Comments

Equivalently, denominator of Sum c(n,k)/(k+1), where ((1 - x)^(4*n+2)/(-4)^n + 2*x)/(1 + x^2) = Sum c(n,k)*x^k, a polynomial. In other words, the integrand (with factor (-1/4)^n) plus 2*x/(1 + x^2) is a polynomial that can easily be term-wise integrated to yield the fraction A363515(n)/a(n), while antiderivative(-2*x/(1 + x^2)) = -log(1 + x^2) cancels the log(2). - M. F. Hasler, Jul 07 2023

Examples

			n       A363515(n)/a(n)    approximate value
-   -------------------    -----------------
0                     1      1
1                79/120      0.6583333333...
2           14087/20160      0.6987599206...
3       3990557/5765760      0.6921129218...
4   217474889/313657344      0.6933518158...
...
From _M. F. Hasler_, Jul 07 2023: (Start)
Let f[n] = (-1/4)^n*(1 - x)^(4*n+2)/(1 + x^2), the rational fraction to be integrated from 0 to 1. We have:
f[0] = 1 - 2*x/(1 + x^2), with primitive F[0] = x/2 - log(1 + x^2), whence an integral equal to 1/2 - log(2), and a(0) = 2 (denominator).
f[1] = -x^4/4 + (3/2)*x^3 - (7/2)*x^2 + (7/2)*x - 1/4 - 2*x/(1 + x^2), and the term-wise integration of the polynomial part gives -1/20 + 3/8 - 7/6 + 7/4 - 1/4 = 79/120, whence A363515(1) = 79 and a(1) = 120.
f[2] = (1/16)*x^8 - (5/8)*x^7 + (11/4)*x^6 - (55/8)*x^5 + (83/8)*x^4 - (71/8)*x^3 + (11/4)*x^2 + (11/8)*x + 1/16 - 2*x/(1 + x^2), so the integration gives 1/144 - 5/64 + 11/28 - 55/48 + 83/40 - 71/32 + 11/12 + 11/16 + 1/16 - log(2) = 14087/20160 - log(2), whence A363515(2) = 14087 and a(2) = 20160, etc. (End)
		

Crossrefs

Cf. A002162, A004767, A016825, A262710, A363515 (numerator).

Programs

  • Mathematica
    Denominator[Simplify[Table[Log[2]+(-1)^n Integrate[(1-x)^(4n+2)/(1+x^2),{x,0,1}]/4^n,{n,0,14}]]]

Formula

Denominator of log(2) + HypergeometricPFQ([1/2, 1, 1], [2*(1 + n), 5/2 + 2*n], -1)/((3 + 4*n)*(-4)^n).
Limit_{n->oo} A363515(n)/a(n) = log(2).

A363515 Numerator of log(2) + (-1/4)^n*Integral_{x=0..1} (1 - x)^(4*n+2)/(1 + x^2) dx.

Original entry on oeis.org

1, 79, 14087, 3990557, 217474889, 10326377909, 19001942777579, 3306285643032971, 3279846716611480357, 121354235196693865579, 19902098013482397470501, 1711580361934007500382731, 9009759106282339175994464009, 59689653955233943488755746919, 3820137854975012405338172218301
Offset: 0

Author

Keywords

Comments

From M. F. Hasler, Jul 07 2023: (Start)
Equivalently, numerator of Sum c(n,k)/(k+1), where Sum c(n,k)*x^k = ((1 - x)^(4*n+2)/(-4)^n + 2*x)/(1 + x^2), a polynomial: The integrand (with factor (-1/4)^n) plus 2*x/(1 + x^2) is a polynomial that is easily integrated to yield the fraction a(n)/A363516(n), while Integral(-2*x/(1 + x^2)) = -log(1 + x^2) cancels the log(2).
Since the integrand/integral as a whole is less than 1/4^n in absolute value, it tends to zero and the fraction tends to log(2). (End)

Examples

			n       a(n)/A363516(n)     approximate value
-   -------------------    ------------------
0                     1       1
1                79/120       0.6583333333...
2           14087/20160       0.6987599206...
3       3990557/5765760       0.6921129218...
4   217474889/313657344       0.6933518158...
...
From _M. F. Hasler_, Jul 07 2023: (Start)
Let f[n] = (-1/4)^n*(1 - x)^(4*n+2)/(1 + x^2), the rational fraction to be integrated from 0 to 1. We have:
f[0] = 1 - 2*x/(1 + x^2), with primitive F[0] = x/2 - log(1 + x^2), whence an integral equal to 1/2 - log(2).
f[1] = -x^4/4 + (3/2)*x^3 - (7/2)*x^2 + (7/2)*x - 1/4 - 2*x/(1 + x^2), and the term-wise integration of the polynomial part gives -1/20 + 3/8 - 7/6 + 7/4 - 1/4 = 79/120, whence a(1) = 79 and A363516(1) = 120.
f[2] = (1/16)*x^8 - (5/8)*x^7 + (11/4)*x^6 - (55/8)*x^5 + (83/8)*x^4 - (71/8)*x^3 + (11/4)*x^2 + (11/8)*x + 1/16 - 2*x/(1 + x^2), so the integration gives 1/144 - 5/64 + 11/28 - 55/48 + 83/40 - 71/32 + 11/12 + 11/16 + 1/16 - log(2) = 14087/20160 - log(2), whence a(2) = 14087 and A363516(2) = 20160, etc. (End)
		

Crossrefs

Cf. A002162, A004767, A016825, A262710, A363516 (denominator).

Programs

  • Mathematica
    Numerator[Simplify[Table[Log[2]+(-1)^n Integrate[(1-x)^(4n+2)/(1+x^2),{x,0,1}]/4^n,{n,0,14}]]]
  • PARI
    A363515(n) = numerator(subst(intformal(((1-x)^(4*n+2)/(-4)^n+2*x)/(1+x^2)),x,1)) \\ The argument of intformal is a polynomial that is trivially integrated over [0, 1]. - M. F. Hasler, Jul 07 2023

Formula

Numerator of log(2) + HypergeometricPFQ([1/2, 1, 1], [2*(1 + n), 5/2 + 2*n], -1)/((3 + 4*n)*(-4)^n).
Limit_{n->oo} a(n)/A363516(n) = log(2).

A362602 Integers in the interval [Pi*k - 1/k, Pi*k + 1/k] for some k > 0 that are numerators of convergents to 2*Pi.

Original entry on oeis.org

6, 19, 44, 333, 710, 103993, 312689, 2292816, 4272943, 10838702, 80143857, 411557987, 2549491779, 14885392687, 42106686282, 1783366216531, 8958937768937, 288469374822515, 856449186698608, 5706674932067741, 12269799050834090, 30246273033735921, 133254891185777774
Offset: 1

Author

Keywords

Comments

Conjecture: the sequence is infinite.

Crossrefs

Intersection of A046955 and A265735.

Programs

  • Mathematica
    hmax=30; A046955=Join[{1}, Numerator[Convergents[2Pi, hmax]]]; a={}; For[h=2, h<=hmax, h++, k=Intersection[List[Floor[Last[x/.N[Solve[Pi*x^2 - 1 - Part[A046955,h] x == 0, x], 2*hmax]]]], List[Ceiling[Last[x/.N[Solve[Pi*x^2 + 1 - Part[A046955,h] x == 0, x], 2*hmax]]]]]; If[k!={} && Ceiling[k*Pi - 1/k] == Floor[k*Pi + 1/k], AppendTo[a,Part[A046955,h]]]]; a

A360210 Indices of squares in A068869.

Original entry on oeis.org

1, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16
Offset: 1

Author

Keywords

Comments

a(14) > 30000. - Michel Marcus, Jan 30 2023

Examples

			5 is a term because A068869(5) = 1 is a square;
8 is a term because A068869(8) = 81 is a square.
		

Crossrefs

Cf. A068869.

Programs

  • PARI
    isok(n) = issquare((sqrtint(n!-1)+1)^2-n!); \\ Michel Marcus, Jan 30 2023

A359314 Three-column table T(n,k) read by rows where the elements in the pair of two adjacent rows, starting with the odd-indexed row T(2j-1,k) and followed by the even-indexed one T(2j,k), are such that they are not multiples of the elements presented in the previous rows and that Sum_{k=1..3} T(2j-1,k)^2 = Sum_{k=1..3} T(2j,k)^2 and Sum_{k=1..3} T(2j-1,k)^6 = Sum_{k=1..3} T(2j,k)^6 for j > 0 and k = 1, 2, 3.

Original entry on oeis.org

3, 19, 22, 10, 15, 23, 15, 52, 65, 36, 37, 67, 23, 54, 73, 33, 47, 74, 3, 55, 80, 32, 43, 81, 11, 65, 78, 37, 50, 81
Offset: 1

Author

Keywords

Comments

It was found empirically (via computer calculations) that for integers a, b, c, d, e and f satisfying a^6 + b^6 + c^6 = d^6 + e^6 + f^6, it is also most likely to be true that a^2 + b^2 + c^2 = d^2 + e^2 + f^2.
Such cases are presented in this sequence where
a = T(2j-1,1), b = T(2j-1,2) c = T(2j-1,3) and
d = T(2j,1), e = T(2j,2), f = T(2j,3).
There currently exists no formula to calculate terms of this sequence -- they have to be found via trial and test (computer) calculations.
Each row consists of 3 columns.
The table starts with the rows which have the smallest sums of squares of elements (such sums also correspond to the smallest sums of the same 6th powers of the same elements) -- see the EXAMPLE section. The terms in each row are presented in ascending order.

Examples

			Table begins:
      k=1 k=2 k=3 SquaresSum 6thPowersSum
n=1:   3, 19, 22;   854         160426514
n=2:  10, 15, 23;   854         160426514
n=3:  15, 52, 65;  7154       95200890914
n=4:  36, 37, 67;  7154       95200890914
n=5:  23, 54, 73;  8774      176277173474
n=6:  33, 47, 74;  8774      176277173474
n=7:   3, 55, 80;  9434      289824641354
n=8:  32, 43, 81;  9434      289824641354
n=9:  11, 65, 78; 10430      300620262890
n=10: 37, 50, 81; 10430      300620262890
...
The elements of the row n=1: 3, 19, 22 and the elements of the row n=2: 10, 15, 23 are such that 3^2 + 19^2 + 22^2 = 10^2 + 15^2 + 23^2 and 3^6 + 19^6 + 22^6 = 10^6 + 15^6 + 23^6.
		

References

  • R. K. Guy, Unsolved problems in Number theory, chapter D, section D1, page 213.

A358314 Triangle T(n,k) read by rows where T(2m - 1,k) = (A051845(2m - 1,k))/(2m - 1) and T(2m,k) = A051845(2m,k)/m for m > 0, k > 0.

Original entry on oeis.org

1, 5, 7, 9, 10, 13, 15, 18, 19, 97, 99, 107, 111, 119, 121, 147, 149, 167, 173, 179, 183, 207, 211, 217, 223, 241, 243, 269, 271, 279, 283, 373, 374, 379, 381, 386, 387, 409, 410, 421, 424, 428, 430, 451, 453, 457, 460, 471
Offset: 1

Author

Keywords

Comments

The n-th row has n! elements.

Examples

			Triangle begins:
       k=1  k=2  k=3 ...
  n=1:   1;
  n=2:   5,   7;
  n=3:   9,  10, ...,  19;
  n=4:  97,  99, 107, ..., 283;
  n=5: 373, 374, 379, 381, ..., 471;
  ...
		

Crossrefs

Cf. A051845, left edge = A221741, right edge = A221740.

Formula

T(n,1) = 4*(((n+1)^(n+1)-(n+1))/((n+1)-1)^2-1)/((3-(-1)^n)*n) = A221741(n).
T(n,n!) = 4*((n-1)*(n+1)^(n+1)+1)/((3-(-1)^n)*n^3) = A221740(n).

A357211 a(n) is the real cube root of the value of the j-function for the n-th Heegner number A003173(n).

Original entry on oeis.org

12, 20, 0, -15, -32, -96, -960, -5280, -640320
Offset: 1

Author

Keywords

Crossrefs

A357580 a(n) = ((1 + sqrt(n))^n - (1 - sqrt(n))^n)/(2*n*sqrt(n)).

Original entry on oeis.org

1, 1, 2, 5, 16, 57, 232, 1017, 4864, 24641, 133024, 752765, 4476928, 27707513, 178613376, 1191756593, 8231124992, 58598528065, 429868937728, 3239768599221, 25073052286976, 198825601967609, 1614604933769216, 13405327061690025, 113725655719346176
Offset: 1

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember;
         `if`(n<2, n, 2*b(n-1, k)+(k-1)*b(n-2, k))
        end:
    a:= n-> b(n$2)/n:
    seq(a(n), n=1..25);  # Alois P. Heinz, Oct 04 2022
  • Mathematica
    Expand[Table[((1 + Sqrt[n])^n - (1 - Sqrt[n])^n)/(2*n*Sqrt[n]), {n, 1, 27}]]
  • Python
    from sympy import simplify, sqrt
    def A357580(n): return simplify(((1+sqrt(n))**n-(1-sqrt(n))**n)/(n*sqrt(n)))>>1 # Chai Wah Wu, Oct 14 2022

Formula

a(n) = A357502(n)/n.
From Alois P. Heinz, Oct 04 2022: (Start)
a(n) = [x^n] x/(n*(1-2*x-(n-1)*x^2)).
a(n) = Sum_{j=0..floor(n/2)} n^(j-1) * binomial(n,2*j+1).
a(n) = A099173(n,n)/n. (End)