Kerry Mitchell has authored 41 sequences. Here are the ten most recent ones:
A289359
Image of 0 under repeated application of the morphism phi = {x -> x,x+1,x+2 if x mod 3 = 0; x -> x-1 if x mod 3 = 1; or x -> x+2 if x mod 3 = 2, for x = 0,1,2,3,...}.
Original entry on oeis.org
0, 1, 2, 0, 4, 0, 1, 2, 3, 0, 1, 2, 0, 4, 3, 4, 5, 0, 1, 2, 0, 4, 0, 1, 2, 3, 3, 4, 5, 3, 7, 0, 1, 2, 0, 4, 0, 1, 2, 3, 0, 1, 2, 0, 4, 3, 4, 5, 3, 4, 5, 3, 7, 3, 4, 5, 6, 0, 1, 2, 0, 4, 0, 1, 2, 3, 0, 1, 2, 0, 4, 3, 4, 5, 0, 1, 2, 0, 4, 0, 1, 2, 3, 3, 4, 5, 3, 7, 3, 4, 5, 3, 7, 3, 4, 5, 6, 3, 4, 5, 3, 7, 6, 7, 8
Offset: 0
-
SubstitutionSystem[{x_ -> Switch[Mod[x, 3], 0, {x, x+1, x+2}, 1, {x-1}, 2, {x+2}]}, {0}, 7] // Last (* Jean-François Alcover, Jan 21 2018 *)
A275107
Limiting sequence of the least significant digits of the odd-indexed terms of A027878 in reverse order.
Original entry on oeis.org
9, 0, 1, 0, 0, 9, 9, 8, 9, 9, 9, 9, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1
A027878 gives the full terms,
A275106 gives the limiting sequence of the least significant digits of the even-indexed terms of
A027878 in reverse order.
A275106
Limiting sequence of the least significant digits of the even-indexed terms of A027878 in reverse order.
Original entry on oeis.org
1, 9, 8, 9, 9, 0, 0, 1, 0, 0, 0, 0, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9
Offset: 1
A027878 gives the full terms,
A275107 gives the limiting sequence of the least significant digits of the odd-indexed terms of
A027878 in reverse order.
A275105
First column of Hilbert curve in A275103.
Original entry on oeis.org
1, 2, 5, 4, 3, 6, 7, 8, 17, 12, 10, 13, 23, 16, 19, 28, 24, 9, 15, 18, 21, 20, 14, 22, 11, 25, 27, 26, 30, 32, 29, 31, 62, 50, 48, 43, 57, 58, 56, 44, 40, 52, 54, 53, 59, 47, 74, 63, 45, 37, 79, 83, 84, 36, 67, 77, 95, 33, 91, 94, 86, 93, 96, 97, 35
Offset: 0
A275104
First row of Hilbert curve in A275103.
Original entry on oeis.org
1, 4, 2, 3, 5, 7, 11, 6, 8, 9, 12, 16, 13, 14, 10, 15, 33, 36, 30, 23, 29, 24, 25, 40, 39, 37, 34, 38, 43, 49, 17, 50, 18, 21, 47, 41, 44, 42, 35, 27, 45, 46, 51, 19, 20, 22, 31, 32, 26, 28, 53, 48, 52, 58, 54, 60, 59, 55, 57, 61, 62, 63, 56, 64, 122
Offset: 0
A275103
Hilbert curve constructed by greedy algorithm, such that each element is the smallest positive integer possible and that all rows, columns, and diagonals contain distinct numbers.
Original entry on oeis.org
1, 2, 3, 4, 2, 3, 1, 5, 4, 2, 5, 1, 2, 6, 5, 4, 3, 5, 1, 6, 7, 8, 9, 10, 6, 3, 4, 8, 7, 9, 8, 11, 2, 1, 8, 4, 1, 6, 10, 3, 9, 5, 7, 11, 3, 10, 6, 4, 9, 10, 1, 7, 11, 3, 9, 12, 4, 8, 5, 7, 11, 13, 12, 6
Offset: 0
The Hilbert curve begins:
1, 4, 2, 3, ...
2, 3, 5, 1, ...
5, 6, 4, 2, ...
4, 2, 1, 5, ...
...
Cf.
A269526 uses antidiagonals instead of the Hilbert curve and
A274640 uses a square spiral.
A274641
Counterclockwise square spiral constructed by greedy algorithm, so that each row, column, and diagonal contains distinct numbers. Start with 0 (so in this version a(n) = A274640(n) - 1).
Original entry on oeis.org
0, 1, 2, 3, 1, 2, 3, 4, 5, 0, 3, 5, 1, 0, 5, 4, 2, 0, 4, 1, 5, 0, 1, 3, 4, 2, 6, 7, 4, 3, 8, 6, 7, 2, 9, 10, 3, 6, 7, 5, 2, 8, 4, 6, 7, 8, 9, 10, 11, 5, 7, 8, 10, 9, 11, 12, 6, 5, 9, 8, 11, 12, 13, 14, 7, 1, 8, 11, 6, 9, 10, 12, 13, 9, 8, 5, 12, 4, 2, 14, 15, 6, 0, 9, 12, 11, 13, 10, 14, 2, 7, 4, 0, 11, 10, 13, 6, 3, 1, 15, 8, 16, 0, 7, 10
Offset: 0
From _Jon E. Schoenfield_, Dec 26 2016: (Start)
The spiral begins:
.
8--15---1---3---6--13--10--11---0---4---7
| |
16 7--14--13--12--11---8---9---5---6 2
| | | |
0 1 3--10---9---2---7---6---8 12 14
| | | | | |
7 8 6 2---4---5---0---1 3 11 10
| | | | | | | |
10 11 7 0 1---3---2 5 4 9 13
| | | | | | | | | |
14 6 5 4 2 0---1 3 7 10 11
| | | | | | | | |
13 9 2 1 3---4---5---0 6 8 12
| | | | | | |
6 10 8 5---0---1---3---4---2 7 9
| | | | |
3 12 4---6---7---8---9--10--11---5 0
| | |
11 13---9---8---5--12---4---2--14--15---6
|
9--14---0--11--15---7--13--12--10--17--16
.
(End)
- N. J. A. Sloane, Table of n, a(n) for n = 0..20000 [Based on Alois Heinz's b-file for A274640]
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Rémy Sigrist, Colored representation of the spiral for -500 <= x, y <= 500
- N. J. A. Sloane, Confessions of a Sequence Addict (AofA2017), slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence.
Cf.
A274640 (if start with 1 at center),
A324481 (position of first n).
A274640
Counterclockwise square spiral constructed by greedy algorithm, so that each row, column, and diagonal contains distinct numbers.
Original entry on oeis.org
1, 2, 3, 4, 2, 3, 4, 5, 6, 1, 4, 6, 2, 1, 6, 5, 3, 1, 5, 2, 6, 1, 2, 4, 5, 3, 7, 8, 5, 4, 9, 7, 8, 3, 10, 11, 4, 7, 8, 6, 3, 9, 5, 7, 8, 9, 10, 11, 12, 6, 8, 9, 11, 10, 12, 13, 7, 6, 10, 9, 12, 13, 14, 15, 8, 2, 9, 12, 7, 10, 11, 13, 14, 10, 9, 6, 13, 5, 3, 15, 16, 7, 1, 10, 13, 12, 14, 11, 15, 3, 8, 5, 1, 12, 11, 14, 7, 4, 2, 16, 9, 17, 1, 8, 11
Offset: 0
The spiral begins:
.
9--16---2---4---7--14--11--12---1---5---8
| |
17 8--15--14--13--12---9--10---6---7 3
| | | |
1 2 4--11--10---3---8---7---9 13 15
| | | | | |
8 9 7 3---5---6---1---2 4 12 11
| | | | | | | |
11 12 8 1 2---4---3 6 5 10 14
| | | | | | | | | |
15 7 6 5 3 1---2 4 8 11 12
| | | | | | | | |
14 10 3 2 4---5---6---1 7 9 13
| | | | | | |
7 11 9 6---1---2---4---5---3 8 10
| | | | |
4 13 5---7---8---9--10--11--12---6 1
| | |
12 14--10---9---6--13---5---3--15--16---7
|
10--15---1--12--16---8--14--13--11--18--17
.
The 8 spokes (A274924-A274931) begin:
E: 1, 2, 4, 8, 11, 12, 16, 9, 19, 24, 22, ...
NE: 1, 3, 2, 9, 7, 8, 12, 15, 13, 17, 20, ...
N: 1, 4, 6, 3, 12, 14, 15, 18, 20, 26, 25, ...
NW: 1, 2, 3, 4, 8, 9, 7, 11, 14, 10, 22, ...
W: 1, 3, 5, 6, 7, 15, 10, 17, 13, 25, 14, ...
SW: 1, 4, 6, 5, 14, 10, 11, 23, 16, 18, 21, ...
S: 1, 5, 2, 9, 13, 8, 7, 11, 10, 17, 19, ...
SE: 1, 6, 5, 12, 16, 17, 21, 24, 27, 13, 15, ...
- Alois P. Heinz, Table of n, a(n) for n = 0..20000
- F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
- Alois P. Heinz, Distribution of a(n) for n <= 4010000
- Kerry Mitchell, Color-coded version of spiral, (1): the colors represent the values, from black (small) to white (large) (jpg file, low resolution)
- Kerry Mitchell, Color-coded version of spiral, (1a): the colors represent the values, from black (small) to white (large) (tiff file, much higher resolution)
- Kerry Mitchell, Color-coded version of spiral, (2): values <= 100 are black and those > 100 are white.
- Zak Seidov, Distribution of a(n) for first 20001 terms
In the same spirit as the infinite Sudoku array
A269526.
Cf.
A274821 (the same construction on a hexagonal tiling).
-
# Maple program from Alois P. Heinz, Jul 12 2016:
fx:= proc(n) option remember; `if`(n=1, 0, (k->
fx(n-1)+sin(k*Pi/2))(floor(sqrt(4*(n-2)+1)) mod 4))
end:
fy:= proc(n) option remember; `if`(n=1, 0, (k->
fy(n-1)-cos(k*Pi/2))(floor(sqrt(4*(n-2)+1)) mod 4))
end:
b:= proc() 0 end:
a:= proc(n) local x,y,s,i,t,m;
x, y:= fx(n+1), fy(n+1);
if b(x, y) > 0 then b(x, y)
else s:={};
for i do t:=b(x+i,y+i); if t>0 then s:=s union {t} else break fi od;
for i do t:=b(x-i,y-i); if t>0 then s:=s union {t} else break fi od;
for i do t:=b(x+i,y-i); if t>0 then s:=s union {t} else break fi od;
for i do t:=b(x-i,y+i); if t>0 then s:=s union {t} else break fi od;
for i do t:=b(x+i,y ); if t>0 then s:=s union {t} else break fi od;
for i do t:=b(x-i,y ); if t>0 then s:=s union {t} else break fi od;
for i do t:=b(x ,y+i); if t>0 then s:=s union {t} else break fi od;
for i do t:=b(x ,y-i); if t>0 then s:=s union {t} else break fi od;
for m while m in s do od;
b(x,y):= m
fi
end:
seq(a(n), n=0..1000);
-
fx[n_] := fx[n] = If[n == 1, 0, Function[k, fx[n-1] + Sin[k*Pi/2]][Mod[Floor[Sqrt[4*(n-2)+1]], 4]]]; fy[n_] := fy[n] = If[n == 1, 0, Function[k, fy[n-1] - Cos[k*Pi/2]][Mod[Floor[Sqrt[4*(n-2)+1]], 4]]]; Clear[b]; b[, ] = 0; a[n_] := Module[{x, y, s, i, t, m}, {x, y} = {fx[n+1], fy[n+1]}; If[b[x, y] > 0, b[x, y], s = {};
For[i=1, True, i++, t=b[x+i, y+i]; If[t>0, s=Union[s,{t}], Break[]]];
For[i=1, True, i++, t=b[x-i, y-i]; If[t>0, s=Union[s,{t}], Break[]]];
For[i=1, True, i++, t=b[x+i, y-i]; If[t>0, s=Union[s,{t}], Break[]]];
For[i=1, True, i++, t=b[x-i, y+i]; If[t>0, s=Union[s,{t}], Break[]]];
For[i=1, True, i++, t=b[x+i, y ]; If[t>0, s=Union[s,{t}], Break[]]];
For[i=1, True, i++, t=b[x-i, y ]; If[t>0, s=Union[s,{t}], Break[]]];
For[i=1, True, i++, t=b[x , y+i]; If[t>0, s=Union[s,{t}], Break[]]];
For[i=1, True, i++, t=b[x , y-i]; If[t>0, s=Union[s,{t}], Break[]]];
m = 1; While[MemberQ[s, m], m++]; b[x, y] = m]]; Table[a[n], {n, 0, 1000}] (* Jean-François Alcover, Nov 14 2016, after Alois P. Heinz *)
-
class Lines: # manage lines in direction d = dx + dy*1j
def _init_(self, d):
self.lines={}; self.t = d.real/d.imag if d.imag else None
def _call_(self, pos): # Return the line through pos in direction d
index = pos.imag if self.t is None else pos.real - pos.imag*self.t
if index not in self.lines: self.lines[index] = Values()
return self.lines[index]
class Values(set): # the set of used numbers on a given line
def next(self, n): # return least k >= n not on this line
return min(m+1 for m in self if m+1 >= n and m+1 not in self
) if n in self else n
def A274640(): # generator of the sequence, see below for possible usage
lines = [Lines(d) for d in (1, 1+1j, 1j, 1-1j)]; pos = 0
for side in range(9**9):
for _ in range(side//2 + 1):
n = 1; lines_here = [L(pos) for L in lines]
while any(n < (n := L.next(n)) for L in lines_here): pass
yield n; any(L.add(n) for L in lines_here); pos += 1j**side
[a for a,A274640(),range(99))%5D%20%23%20_M.%20F.%20Hasler"> in zip(A274640(),range(99))] # _M. F. Hasler, Feb 01 2025
A257348
Repeatedly applying the map x -> sigma(x) partitions the natural numbers into a number of disjoint trees; sequence gives the (conjectural) list of minimal representatives of these trees.
Original entry on oeis.org
1, 2, 5, 16, 19, 27, 29, 33, 49, 50, 52, 66, 81, 85, 105, 146, 147, 163, 170, 189, 197, 199, 218, 226, 243, 262, 303, 315, 343, 424, 430, 438, 453, 461, 463, 469, 472, 484, 489, 513, 530, 550, 584, 677, 722, 746, 786, 787, 804, 813, 821, 831, 842, 859, 867, 876, 892, 903, 914, 916, 937, 977, 982, 988, 990, 1029
Offset: 1
- Kerry Mitchell, Posting to Math Fun Mailing List, Apr 30 2015
Cf.
A216200 (number of disjoint trees up to n);
A257669 and
A257670: size and smallest number of subtree rooted in n.
A249973
Positive integers A when the positive roots of r^2 = Ar + B are listed in increasing order.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 1, 2, 3, 4, 1, 2, 3, 1, 4, 2, 1, 3, 2, 4, 1, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 5, 3, 1, 4, 2, 1, 3, 5, 2, 4, 1, 3, 2, 5, 1, 4, 3
Offset: 1
a(6) = 2 because the 6th smallest value of r (approximately 2.732050808) is that for A=2, B=2.
Comments