J. H. Conway has authored 215 sequences. Here are the ten most recent ones:
A170943
Numbers n with the property that when 1/n is written in base 3 (in either of the two representations, if the representation is ambiguous) the fractional part contains no 1's.
Original entry on oeis.org
1, 4, 10, 12, 13, 28, 30, 36, 39, 40, 82, 84, 90, 91, 108, 117, 120, 121, 244, 246, 252, 270, 273, 324, 328, 351, 360, 363, 364, 730, 732, 738, 756, 757, 810, 819, 820, 949, 972, 984, 1036, 1053, 1080, 1089, 1092, 1093, 2188, 2190, 2196, 2214, 2268, 2271, 2362, 2430
Offset: 1
1/3 in base 3 can be written as either .1 or .0222222... The first version contains a 1, so 3 is not in the sequence.
1/4 in base 3 is .02020202020..., so 4 is in the sequence.
A170952
Take the Cantor set sequence A121153 and if the entry m = A121153(n) is in the range 3^k <= m < 3^(k+1), subtract 3^k from it.
Original entry on oeis.org
0, 0, 1, 0, 1, 3, 4, 0, 1, 3, 9, 12, 13, 0, 1, 3, 9, 10, 27, 36, 39, 40, 0, 1, 3, 9, 27, 30, 81, 85, 108, 117, 120, 121, 0, 1, 3, 9, 27, 28, 81, 90, 91, 220, 243, 255, 307, 324, 351, 360, 363, 364, 0, 1, 3, 9, 27, 81, 84, 175, 243, 270, 273, 625, 660, 729, 733, 765, 921, 972, 1053
Offset: 1
If written as a triangle:
0,
0, 1,
0, 1, 3, 4,
0, 1, 3, 9, 12, 13,
0, 1, 3, 9, 10, 27, 36, 39, 40,
0, 1, 3, 9, 27, 30, 81, 85, 108, 117, 120, 121,
0, 1, 3, 9, 27, 28, 81, 90, 91, 220, 243, 255, 307, 324, 351, 360, 363, 364,
0, 1, 3, 9, 27, 81, 84, 175, 243, 270, 273, 625, 660, 729, 733, 765, 921, 972, 1053, 1080, 1089, 1092, 1093,
...
Original entry on oeis.org
2, 5, 6, 7, 8, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 85, 86, 87, 88, 89
Offset: 1
A170951
Numbers n with the property that some of the fractions i/n (with gcd(i,n)=1, 0 < i/n < 1) are in the Cantor set and some are not.
Original entry on oeis.org
9, 12, 13, 27, 28, 30, 36, 39, 40, 81, 82, 84, 90, 91, 108, 117, 120, 121, 243, 244, 246, 252, 270, 273, 324, 328, 351, 360, 363, 364, 729, 730, 732, 738, 756, 757, 810, 819, 820, 949, 972, 984, 1036, 1053, 1080, 1089, 1092, 1093, 2187
Offset: 1
1/9 is in the Cantor set, but 4/9 is not.
A161598
Numbers such that TITO(n) is not equal to n, where TITO(n) = A161594(n).
Original entry on oeis.org
10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 34, 35, 36, 38, 40, 42, 45, 48, 49, 50, 51, 52, 54, 56, 57, 58, 60, 63, 64, 65, 68, 70, 72, 74, 75, 76, 78, 80, 81, 84, 85, 87, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116
Offset: 1
-
a161598 n = a161598_list !! (n-1)
a161598_list = filter (\x -> a161594 x /= x) [1..]
-- Reinhard Zumkeller, Oct 14 2011
-
reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] Select[Range[200], f[ # ] != # &]
A161600
Nonprime numbers such that TITO(n) = n, where TITO(n) = A161594(n).
Original entry on oeis.org
1, 4, 6, 8, 9, 22, 26, 33, 39, 44, 46, 55, 62, 66, 69, 77, 82, 86, 88, 93, 99, 121, 143, 169, 187, 202, 206, 226, 242, 252, 253, 262, 286, 299, 303, 309, 339, 341, 343, 363, 393, 404, 422, 446, 451, 466, 473, 482, 484, 505, 525, 583, 606, 616, 622, 626, 633, 662, 669, 671, 682, 686
Offset: 1
-
a161600 n = a161600_list !! (n-1)
a161600_list = filter ((== 0) . a010051) a161597_list
-- Reinhard Zumkeller, Oct 14 2011
-
reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k; f[n_] := FromDigits[Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]]; Select[Range[600], f[#] == # && ! PrimeQ[#] &]
-
is(n)=!isprime(n)&&n==A161594(n) \\ M. F. Hasler, May 11 2015
Minor edits and more displayed terms from
M. F. Hasler, May 11 2015
A161597
Numbers such that TITO(n) = n, where TITO(n) = A161594(n).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 37, 39, 41, 43, 44, 46, 47, 53, 55, 59, 61, 62, 66, 67, 69, 71, 73, 77, 79, 82, 83, 86, 88, 89, 93, 97, 99, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179
Offset: 1
-
a161597 n = a161597_list !! (n-1)
a161597_list = filter (\x -> a161594 x == x) [1..]
-- Reinhard Zumkeller, Oct 14 2011
-
reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] Select[Range[200], f[ # ] == # &]
-
is(n)={n==A161594(n)} \\ M. F. Hasler, May 11 2015
A161594
a(n) = R(f(n)), where R = A004086 = reverse (decimal) digits, f = A071786 = reverse digits of prime factors.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 21, 13, 41, 51, 61, 17, 81, 19, 2, 12, 22, 23, 42, 52, 26, 72, 82, 29, 3, 31, 23, 33, 241, 53, 63, 37, 281, 39, 4, 41, 24, 43, 44, 54, 46, 47, 84, 94, 5, 312, 421, 53, 45, 55, 65, 372, 481, 59, 6, 61, 62, 36, 46, 551, 66, 67, 482, 69, 7, 71, 27
Offset: 1
a(34) = 241, because 34 = 2*17, f(34) = 2*71 = 142, and reversing gives 241.
-
a161594 = a004086 . a071786 -- Reinhard Zumkeller, Oct 14 2011
-
read("transforms") ; A071786 := proc(n) local ifs,a,d ; ifs := ifactors(n)[2] ; a := 1 ; for d in ifs do a := a*digrev(op(1,d))^op(2,d) ; od: a ; end: A161594 := proc(n) digrev(A071786(n)) ; end: seq(A161594(n),n=1..80) ; # R. J. Mathar, Jun 16 2009
# second Maple program:
r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n):
a:= n-> r(mul(r(i[1])^i[2], i=ifactors(n)[2])):
seq(a(n), n=1..100); # Alois P. Heinz, Jun 19 2017
-
reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] Table[f[n], {n, 100}]
Table[IntegerReverse[Times@@Flatten[Table[IntegerReverse[#[[1]]],#[[2]]]& /@FactorInteger[n]]],{n,100}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 21 2016 *)
-
R=A004086; A161594(n)={n=factor(n);n[,1]=apply(R,n[,1]);R(factorback(n))} \\ M. F. Hasler, Jun 24 2009. Removed code for R here, see A004086 for most recent & efficient version. - M. F. Hasler, May 11 2015
-
from math import prod
from sympy import factorint
def f(n): return prod(int(str(p)[::-1])**e for p, e in factorint(n).items())
def R(n): return int(str(n)[::-1])
def a(n): return 1 if n == 1 else R(f(n))
print([a(n) for n in range(1, 73)]) # Michael S. Branicky, Mar 28 2022
A161596
Numbers in cycles of RATS sequences.
Original entry on oeis.org
78, 111, 117, 156, 222, 288, 444, 888, 1223, 1677, 3489, 4444, 8888, 11119, 11127, 11667, 11999, 12333, 16777, 23388, 27888, 34589, 44556, 111177, 112333, 228888, 444455, 889999, 1111113, 1177777, 1788899, 2222244, 4446666, 4558889, 11144445, 13444447, 55556688
Offset: 1
The numbers 111, 222, 444, 888, 1677, 3489, 12333 and 44556 are in the sequence because they are in the cycle shown in A066710. The numbers 117 and 288 are in the cycle demonstrated in A066711.
The numbers 4444, 8888, 16777, 34589, 112333, 444455, ..., 1112278888, 11999, 1119, 1223 are in the cycle started at A161590(4). The numbers 11127 and 23388 are in the cycle started at A161590(7).
Descriptive comment and examples added by
R. J. Mathar, Jul 08 2009
A161593
Lengths of new periods in the RATS sequence (0 replacing infinity).
Original entry on oeis.org
0, 8, 2, 18, 2, 2, 2, 14, 2, 3, 2, 2, 2, 6
Offset: 1
a(1)=A114611(0). a(2)=A114611(j=3)=8 with a cycle of length 8 shown in A066710.
A114611(j=6)=8 does not contribute because the cycle is the same as reached from j=3.
a(3)=A114611(9)=2 with a new cycle of length 2 shown in A066711.
A114611(j=12)=8 does not contribute because the cycle is the same as reached from j=3.
A114611(j=15)=8 does not contribute because 15->66->123 is the cycle as reached from j=3.
A114611(j=18)=2 does not contribute because the cycle is the same as reached from j=9.
A114611(j=21)=8 does not contribute because 21->33->66 reaches the same cycle as started from j=3.
a(4)=A114611(j=29)=18.
- Michael S. Branicky, RATS Sequence Cycles.
- Curtis Cooper, RATS.
- Curtis Cooper and Robert E. Kennedy, Base 10 RATS Cycles and Arbitrarily Long Base 10 RATS Cycles, Applications of Fibonacci numbers, Vol. 8, Kluwer Acad. Publ., Dordrecht, 1999, pages 83-93.
- Tanya Khovanova, Destinies of Numbers.
Comments