cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: J. H. Conway

J. H. Conway's wiki page.

J. H. Conway has authored 215 sequences. Here are the ten most recent ones:

A170943 Numbers n with the property that when 1/n is written in base 3 (in either of the two representations, if the representation is ambiguous) the fractional part contains no 1's.

Original entry on oeis.org

1, 4, 10, 12, 13, 28, 30, 36, 39, 40, 82, 84, 90, 91, 108, 117, 120, 121, 244, 246, 252, 270, 273, 324, 328, 351, 360, 363, 364, 730, 732, 738, 756, 757, 810, 819, 820, 949, 972, 984, 1036, 1053, 1080, 1089, 1092, 1093, 2188, 2190, 2196, 2214, 2268, 2271, 2362, 2430
Offset: 1

Author

J. H. Conway, T. D. Noe and N. J. A. Sloane, Feb 20 2010

Keywords

Comments

That is, neither of the two representations of 1/n in base 3 contain a 1.
This is A121153 without the numbers 3^k, k >= 1. See that entry for further information.

Examples

			1/3 in base 3 can be written as either .1 or .0222222... The first version contains a 1, so 3 is not in the sequence.
1/4 in base 3 is .02020202020..., so 4 is in the sequence.
		

Crossrefs

A170952 Take the Cantor set sequence A121153 and if the entry m = A121153(n) is in the range 3^k <= m < 3^(k+1), subtract 3^k from it.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 4, 0, 1, 3, 9, 12, 13, 0, 1, 3, 9, 10, 27, 36, 39, 40, 0, 1, 3, 9, 27, 30, 81, 85, 108, 117, 120, 121, 0, 1, 3, 9, 27, 28, 81, 90, 91, 220, 243, 255, 307, 324, 351, 360, 363, 364, 0, 1, 3, 9, 27, 81, 84, 175, 243, 270, 273, 625, 660, 729, 733, 765, 921, 972, 1053
Offset: 1

Author

J. H. Conway, T. D. Noe and N. J. A. Sloane, Feb 22 2010

Keywords

Examples

			If written as a triangle:
0,
0, 1,
0, 1, 3, 4,
0, 1, 3, 9, 12, 13,
0, 1, 3, 9, 10, 27, 36, 39, 40,
0, 1, 3, 9, 27, 30, 81, 85, 108, 117, 120, 121,
0, 1, 3, 9, 27, 28, 81, 90, 91, 220, 243, 255, 307, 324, 351, 360, 363, 364,
0, 1, 3, 9, 27, 81, 84, 175, 243, 270, 273, 625, 660, 729, 733, 765, 921, 972, 1053, 1080, 1089, 1092, 1093,
...
		

Crossrefs

A170944 Complement of A121153.

Original entry on oeis.org

2, 5, 6, 7, 8, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 83, 85, 86, 87, 88, 89
Offset: 1

Author

J. H. Conway and N. J. A. Sloane, Feb 20 2010

Keywords

Comments

If n is a term in this sequence then i/n is not in the Cantor set.

Crossrefs

A170951 Numbers n with the property that some of the fractions i/n (with gcd(i,n)=1, 0 < i/n < 1) are in the Cantor set and some are not.

Original entry on oeis.org

9, 12, 13, 27, 28, 30, 36, 39, 40, 81, 82, 84, 90, 91, 108, 117, 120, 121, 243, 244, 246, 252, 270, 273, 324, 328, 351, 360, 363, 364, 729, 730, 732, 738, 756, 757, 810, 819, 820, 949, 972, 984, 1036, 1053, 1080, 1089, 1092, 1093, 2187
Offset: 1

Author

J. H. Conway and N. J. A. Sloane, Feb 20 2010

Keywords

Comments

Equals A054591 \ {1,3,4,10}.
The natural numbers may be divided into three sets: denominators which force membership in the Cantor set, denominators which deny membership in the Cantor set and denominators which neither force nor deny membership. The first set contains just the numbers 1, 3, 4, 10. The second set is A170944. The third set is the present sequence.

Examples

			1/9 is in the Cantor set, but 4/9 is not.
		

A161598 Numbers such that TITO(n) is not equal to n, where TITO(n) = A161594(n).

Original entry on oeis.org

10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 34, 35, 36, 38, 40, 42, 45, 48, 49, 50, 51, 52, 54, 56, 57, 58, 60, 63, 64, 65, 68, 70, 72, 74, 75, 76, 78, 80, 81, 84, 85, 87, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116
Offset: 1

Author

J. H. Conway & Tanya Khovanova, Jun 14 2009

Keywords

Comments

There are no prime numbers in the sequence: A010051(a(n)) = 0.

Crossrefs

Complement of A161597.

Programs

  • Haskell
    a161598 n = a161598_list !! (n-1)
    a161598_list = filter (\x -> a161594 x /= x) [1..]
    -- Reinhard Zumkeller, Oct 14 2011
  • Mathematica
    reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] Select[Range[200], f[ # ] != # &]

Extensions

Edited by N. J. A. Sloane, Jun 23 2009
Offset corrected by Reinhard Zumkeller, Oct 14 2011

A161600 Nonprime numbers such that TITO(n) = n, where TITO(n) = A161594(n).

Original entry on oeis.org

1, 4, 6, 8, 9, 22, 26, 33, 39, 44, 46, 55, 62, 66, 69, 77, 82, 86, 88, 93, 99, 121, 143, 169, 187, 202, 206, 226, 242, 252, 253, 262, 286, 299, 303, 309, 339, 341, 343, 363, 393, 404, 422, 446, 451, 466, 473, 482, 484, 505, 525, 583, 606, 616, 622, 626, 633, 662, 669, 671, 682, 686
Offset: 1

Author

J. H. Conway & Tanya Khovanova, Jun 14 2009

Keywords

Crossrefs

Cf. A010051, A161594; subsequence of A161597.

Programs

  • Haskell
    a161600 n = a161600_list !! (n-1)
    a161600_list = filter ((== 0) . a010051) a161597_list
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Mathematica
    reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k; f[n_] := FromDigits[Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]]; Select[Range[600], f[#] == # && ! PrimeQ[#] &]
  • PARI
    is(n)=!isprime(n)&&n==A161594(n) \\ M. F. Hasler, May 11 2015

Extensions

Edited by N. J. A. Sloane, Jun 23 2009
Offset corrected by Reinhard Zumkeller, Oct 14 2011
Minor edits and more displayed terms from M. F. Hasler, May 11 2015

A161597 Numbers such that TITO(n) = n, where TITO(n) = A161594(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 37, 39, 41, 43, 44, 46, 47, 53, 55, 59, 61, 62, 66, 67, 69, 71, 73, 77, 79, 82, 83, 86, 88, 89, 93, 97, 99, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179
Offset: 1

Author

J. H. Conway & Tanya Khovanova, Jun 14 2009

Keywords

Comments

TITO(p) = p, for any prime p.

Crossrefs

Complement of A161598; nonprimes: A161600.

Programs

  • Haskell
    a161597 n = a161597_list !! (n-1)
    a161597_list = filter (\x -> a161594 x == x) [1..]
    -- Reinhard Zumkeller, Oct 14 2011
    
  • Mathematica
    reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] Select[Range[200], f[ # ] == # &]
  • PARI
    is(n)={n==A161594(n)} \\ M. F. Hasler, May 11 2015

Extensions

Edited by N. J. A. Sloane, Jun 23 2009
Offset corrected by Reinhard Zumkeller, Oct 14 2011

A161594 a(n) = R(f(n)), where R = A004086 = reverse (decimal) digits, f = A071786 = reverse digits of prime factors.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 21, 13, 41, 51, 61, 17, 81, 19, 2, 12, 22, 23, 42, 52, 26, 72, 82, 29, 3, 31, 23, 33, 241, 53, 63, 37, 281, 39, 4, 41, 24, 43, 44, 54, 46, 47, 84, 94, 5, 312, 421, 53, 45, 55, 65, 372, 481, 59, 6, 61, 62, 36, 46, 551, 66, 67, 482, 69, 7, 71, 27
Offset: 1

Author

J. H. Conway & Tanya Khovanova, Jun 14 2009

Keywords

Comments

Might be called TITO(n), turning n inside out then turning outside in.
Here is the operation: take a number n and find its prime factors. Reverse the digits of every prime factor (for example, replace 17 by 71). Multiply the factors respecting multiplicities. For example, if the original number was 17^2*43^3, the new product will be 71^2*34^3. After that, reverse the resulting number.

Examples

			a(34) = 241, because 34 = 2*17, f(34) = 2*71 = 142, and reversing gives 241.
		

Programs

  • Haskell
    a161594 = a004086 . a071786  -- Reinhard Zumkeller, Oct 14 2011
    
  • Maple
    read("transforms") ; A071786 := proc(n) local ifs,a,d ; ifs := ifactors(n)[2] ; a := 1 ; for d in ifs do a := a*digrev(op(1,d))^op(2,d) ; od: a ; end: A161594 := proc(n) digrev(A071786(n)) ; end: seq(A161594(n),n=1..80) ; # R. J. Mathar, Jun 16 2009
    # second Maple program:
    r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n):
    a:= n-> r(mul(r(i[1])^i[2], i=ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 19 2017
  • Mathematica
    reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] Table[f[n], {n, 100}]
    Table[IntegerReverse[Times@@Flatten[Table[IntegerReverse[#[[1]]],#[[2]]]& /@FactorInteger[n]]],{n,100}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 21 2016 *)
  • PARI
    R=A004086; A161594(n)={n=factor(n);n[,1]=apply(R,n[,1]);R(factorback(n))} \\  M. F. Hasler, Jun 24 2009. Removed code for R here, see A004086 for most recent & efficient version. - M. F. Hasler, May 11 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def f(n): return prod(int(str(p)[::-1])**e for p, e in factorint(n).items())
    def R(n): return int(str(n)[::-1])
    def a(n): return 1 if n == 1 else R(f(n))
    print([a(n) for n in range(1, 73)]) # Michael S. Branicky, Mar 28 2022

Formula

a(p) = p, for prime p.
a(A161598(n)) <> A161598(n); a(A161597(n)) = A161597(n); A010051(a(A161600(n))) = 1.
From M. F. Hasler, Jun 25 2009: (Start)
a( p*10^k ) = p for any prime p.
Proof: if gcd( p, 2*5) = 1, then a( p * 10^k ) = R( R(p) * R(2)^k * R(5)^k ) = R( R(p) * 10^k ) = R(R(p)) = p;
if gcd(p, 2*5) = 2, then p=2 and a( p * 10^k ) = R( R(2)^(k+1) * R(5)^k ) = R( 2 * 10^k ) = 2 = p and mutatis mutandis for gcd(p, 2*5) = 5. (End)

Extensions

Simpler definition from R. J. Mathar, Jun 16 2009
Edited by N. J. A. Sloane, Jun 23 2009

A161596 Numbers in cycles of RATS sequences.

Original entry on oeis.org

78, 111, 117, 156, 222, 288, 444, 888, 1223, 1677, 3489, 4444, 8888, 11119, 11127, 11667, 11999, 12333, 16777, 23388, 27888, 34589, 44556, 111177, 112333, 228888, 444455, 889999, 1111113, 1177777, 1788899, 2222244, 4446666, 4558889, 11144445, 13444447, 55556688
Offset: 1

Author

J. H. Conway and Tanya Khovanova, Jun 14 2009

Keywords

Comments

The set of all numbers in any cycle of RATS sequences, sorted into natural order.
This implies that for any value a(j) in this sequence, A036839(a(j)) is again member of the sequence.
See Branicky link for larger terms. - Michael S. Branicky, Dec 30 2022

Examples

			The numbers 111, 222, 444, 888, 1677, 3489, 12333 and 44556 are in the sequence because they are in the cycle shown in A066710. The numbers 117 and 288 are in the cycle demonstrated in A066711.
The numbers 4444, 8888, 16777, 34589, 112333, 444455, ..., 1112278888, 11999, 1119, 1223 are in the cycle started at A161590(4). The numbers 11127 and 23388 are in the cycle started at A161590(7).
		

Extensions

Descriptive comment and examples added by R. J. Mathar, Jul 08 2009
a(20) and beyond from Michael S. Branicky, Dec 30 2022

A161593 Lengths of new periods in the RATS sequence (0 replacing infinity).

Original entry on oeis.org

0, 8, 2, 18, 2, 2, 2, 14, 2, 3, 2, 2, 2, 6
Offset: 1

Author

J. H. Conway and Tanya Khovanova, Jun 14 2009

Keywords

Comments

The values A114611(j) for those starting values j of the RATS mapping x->A036839(x) which end in cycles that cannot be reached starting from any smaller j.
Every integer > 1 appears in this sequence. - Andrey Zabolotskiy, Jun 11 2017
For other terms see Branicky link. - Michael S. Branicky, Dec 30 2022

Examples

			a(1)=A114611(0). a(2)=A114611(j=3)=8 with a cycle of length 8 shown in A066710.
A114611(j=6)=8 does not contribute because the cycle is the same as reached from j=3.
a(3)=A114611(9)=2 with a new cycle of length 2 shown in A066711.
A114611(j=12)=8 does not contribute because the cycle is the same as reached from j=3.
A114611(j=15)=8 does not contribute because 15->66->123 is the cycle as reached from j=3.
A114611(j=18)=2 does not contribute because the cycle is the same as reached from j=9.
A114611(j=21)=8 does not contribute because 21->33->66 reaches the same cycle as started from j=3.
a(4)=A114611(j=29)=18.
		

Extensions

Comment and examples added by R. J. Mathar, Jul 07 2009
a(9)-a(14) from Michael S. Branicky, Dec 30 2022